
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

THE DESIGN OF AN INTERFACE EDITOR FOR THE
COMPUTER-AIDED PROTOTYPING SYSTEM

by

Bruce D. Plutchak

September 1997

Thesis Advisor: Luqi

Approved for public release; distribution is unlimited

imc QüÄLii'sr JcaraPBüiBD 3

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302 and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY {Leave blank) 2. REPORT DATE

September 1997

3. REPORT TYPE AND DATES COVERED

Master's Thesis

TITLE AND SUBTITLE

THE DESIGN OF AN INTERFACE EDITOR FOR THE
COMPUTER-AIDED PROTOTYPING SYSTEM

6. AUTHOR

Plutchak, Bruce, D.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense of the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

ABSTRACT (Maximum 200 words)

This thesis focuses on the design and implementation of a new interface editor for the Computer-Aided
Prototyping System (CAPS), which de-couples the user interface from the real-time prototype. Using this design, a
CAPS user creates a prototype with an interface development tool and a Prototyping System Description Language
(PSDL) editor. This real-time prototype executes on two processors using a client/server architecture; the user
interface executes on a client, and the real-time PSDL application executes on a server. In addition, this thesis
includes demonstrations, with source code, which implement the design. The demonstrations show that Java
development tools can be used to create a high-quality user interface for a PSDL application. A socket connection
was used to implement the client/server communication. The demonstrations were successful, but the socket
programming model is too primitive for the new design. Therefore, a high-level client/server architecture, such as the
Common Object Resource Broker Architecture (CORBA), is required for future development of the design.

14. SUBJECT TERMS
CAPS. Software Reuse,
Client/Server, Java

Software Base, Real-time, Graphical User Interface,
15. NUMBER OF

PAGES 132

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
UNCLASSIFIED

18. SECURITY
CLASSIFICATION OF
THIS PAGE
UNCLASSIFIED

19. SECURITY
CLASSIFICATION OF
ABSTRACT
UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL

NSKI 7540-01-2(30-5500 Standard Form 298 (Rev 2-69)
Prescribed by ANSI Std 239-18

DTIC QÜALI INSPECTED 3

11

Approved for public release; distribution is unlimited

THE DESIGN OF AN INTERFACE EDITOR FOR THE
COMPUTER-AIDED PROTOTYPING SYSTEM

Bruce D. Plutchak
B.S., University of California at San Diego, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCD2NCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

Author

Approved by:

O^w*. ^)\) 9s^rX^
Bruce D. Plutchak

Lnqi, Thesis Advisor

7
V. Berzins, Second Reader

#H

T. Lewis, Chairman lan, Department of Computer Science

in

IV

ABSTRACT

This thesis focuses on the design and implementation of a new interface editor for

the Computer-Aided Prototyping System (CAPS), which de-couples the user interface

from the real-time prototype. Using this design, a CAPS user creates a prototype with an

interface development tool and a Prototyping System Description Language (PSDL)

editor. This real-time prototype executes on two processors using a client/server

architecture; the user interface executes on a client, and the real-time PSDL application

executes on a server. In addition, this thesis includes demonstrations, with source code,

which implement the design. The demonstrations show that Java development tools can

be used to create a high-quality user interface for a PSDL application. A socket

connection was used to implement the client/server communication. The demonstrations

were successful, but the socket programming model is too primitive for the new design.

Therefore, a high-level client/server architecture, such as the Common Object Resource

Broker Architecture (CORBA), is required for future development of the design.

VI

THESIS DISCLAIMER

Ada is a trademark of the United States Government, Ada Joint Program Office.
Motif is a trademark of Open Software Foundation.
X-Windows is a trademark of The Massachusetts Institute of Technology.
Java is a trademark of Sun Microsystems.
All other trademarks and registered trademarks herein are the property of their owners.

vu

Vlll

TABLE OF CONTENTS

I. INTRODUCTION 1

A. GENERAL 1

B. PROBLEM STATEMENT 1

C. SCOPE 2

D. ORGANIZATION OF THESIS 2

II. BACKGROUND 3

A COMPUTER-AIDED PROTOTYPING SYSTEM 3

B. GUI DEVELOPMENT TOOLS 8

C. DE-COUPLING OF THE GUI 11

D. EVALUATION OF GUI TOOLS 13

III. DESIGN OF A CAPS INTERFACE EDITOR 15

A. DESIGN PROCESS 15

B. DESIGN RESULTS - GUI-CLIENT/ PSDL-SERVER 16

IV. IMPLEMETATION CONSIDERATIONS 19

A. SELECTION OF GUI TOOLS 19

B. SELECTION OF CLIENT/SERVER MIDDLEWARE 20

C. PSDL-SERVER - SOCKET - GUI-CLIENT 22

D. PSDL-SERVER - CORBA - GUI-CLIENT 24

V. DEMONSTRATIONS OF NEW DESIGN 27

A. ROBOT CONTROL SYSTEM 27

B. SMARTSHIP PROJECT 34

VI. CONCLUSION 37

IX

A. SUMMARY OF DESIGN AND IMPLEMENTATION 37

B. FUTURE RESEARCH 38

APPENDLX A. EVALUTAION OF GUI TOOLS 41

A. GUI TOOLKITS 41

B. GUI BUILDERS 43

C. USER INTERFACE MANAGEMENT SYSTEMS 47

D. APPLICATION DEVELOPMENT ENVIRONMENTS 49

E. OTHER GUI TOOLS 54

APPENDIX B. SOURCE CODE... 57

A. ROBOT PSDL-SERVER 57

B. ROBOT JAVA GUI-CLIENT 82

C. ROBOT VISUAL WORKSHOP (MOTIF) GUI-CLIENT 91

LIST OF REFERENCES 113

INITIAL DISTRIBUTION LIST 117

ACKNOWLEDGMENT

The author wants to thank Prof. Luqi and Prof. Berzins for their help and

guidance in preparing this work. I would also like my thank Lori, Diana, and Kyle for

their support.

XI

Xll

I. INTRODUCTION

A. GENERAL

In the development of software applications, the user interface software is often

complex, large, and difficult to design. The user interface is the aspect of a computer

program that has the most direct contact with the user. Likewise, the design of user

interfaces has become an important part of the Computer-Aided Prototyping System

(CAPS). CAPS is a collection of engineering tools, which are used to design real-time

systems. A CAPS user enters specifications using the Prototyping System Description

Language (PSDL). To complete the prototype, the user designs a user interface with the

CAPS interface editor. Finally, the PSDL is translated into Ada; the Ada is linked with

the user interface; and the prototype application is executed.

CAPS is an evolving research project, and many of its components are still under

development. The user interface development tools of CAPS need to be revised. For

instance, the current version of CAPS is only fully functional on a Sun Microsystems

workstation running SunOS UNIX. Currently, the CAPS interface editor is Century

Computing's Transportable Applications Environment (TAE). TAE is only available for a

few platforms, and it has limited capabilities. In addition, the CAPS user interface, written

in Motif, is not easily ported to other platforms.

B. PROBLEM STATEMENT

A CAPS designer uses the prototyping process to create an application. PSDL is

used to express the specifications of the application. Next, the CAPS interface editor can

be used to create a prototype user interface. Unfortunately, the current interface editor does

have the support and functionality that is required. This thesis focuses on creating a new

design for linking a user interface with a PSDL application. In addition, this thesis

evaluates user interface development tools, which could be used to increase the

functionality, portability, and versatility of CAPS.

C. SCOPE

The scope of this work was originally intended to integrate a commercial user

interface development tool into CAPS. As work on this thesis progressed, it became clear

that a new design for linking the user interface with the prototype was required. This

design is based upon a client/server architecture. In addition, two demonstrations that use

the new design are included.

D. ORGANIZATION OF THESIS

Chapter II contains background information about CAPS, user interface

development tools, and supporting documentation. Chapter III presents the design process

and results. Chapter IV presents the implementation of the new design. Chapter V

contains demonstrations of the new design. Chapter VI provides the conclusion and a

discussion of future research. Appendix A contains evaluations of user interface

development tools.

II. BACKGROUND

A. COMPUTER-AIDED PROTOTYPING SYSTEM

The Computer-Aided Prototyping System (CAPS) is a software engineering tool

for developing prototypes of real-time systems [Ref. 1]. CAPS was designed to allow a

user to build software specifications and make them executable. In addition, CAPS can be

used for requirements analysis, evaluation of models, and designing large-embedded

systems. CAPS promotes the rapid prototyping life cycle (Figure 1). Rapid prototyping

is an alternative paradigm for software development. By using the prototyping process, a

user can validate system requirements early in the project's life cycle. In addition, CAPS

includes tools for software reuse and evolution. [Ref. 2]

Initial Coals Determine
Requirements

Requirements Design/Modify
Prototype System

Problems

Performance

Prototype

Demonstrate
Prototype

Construct
Production System

New
Goals

Modularization and Objects

System

Production
Use

Figure 1. The Rapid Prototyping Life Cycle "From Ref. [7]'

A CAPS user specifies relationships, data flow, and constraints between

software objects. These specifications are expressed in the Prototyping System

Description Language (PSDL). The user initially works at a high level of abstraction,

breaking down the objects into lower levels of abstraction. At the lowest levels, existing

code from a software library is used to implement the object. Alternatively, a high-level

language, such as Ada, can be used to implement the object. The papers [Ref. 3], [Ref. 4],

[Ref. 5], [Ref. 6], and [Ref. 7] provide more information about CAPS.

1. CAPS Components

CAPS is a development environment consisting of tools linked by a user interface

(Figure 2). The main sections of CAPS include: editors, execution support, software

database, and project control. The editors are used to implement the software design.

Execution support is for software translation, real-time scheduling, and compilation. The

software database is intended for software storage and reuse. Project control contains

tools for software evolution, such as revision control, merging of software versions, and

project planning. [Ref. 8]

2. Prototyping System Description Language

A CAPS user can input software specifications via the Prototyping System

Description Language (PSDL). PSDL is a text-based language designed to express

specifications of real-time systems. PSDL has only two kinds of components: operators

and types. PSDL is based on a graph model of edges and vertices (Figure 3). The edges

represent streams of data flow from one operator to another. The streams are instances of

types. The vertices represent software operators. The operators can either be sporadic or

periodic. The operators may have associated timing constraints. An example timing

constraint is Maximum Execution Time (MET). In PSDL, the MET of an operator must

not be exceeded, otherwise a timing error will be displayed. In addition, the operators may

also have control constraints. Control constraints for a periodic operator include: Finish

Within (FW) and Period. [Ref. 3]

PSDL supports the concept of program abstraction. The PSDL operators can either

be composite or atomic. An atomic operator is implemented in a standard programming

language such as Ada. A composite operator can be decomposed into a sub-layer

containing operators and streams. [Ref. 3]

Prototype

fe

u CAPS (designer mode) FWP?1
'"Eara Databases Exec Support: Help

-»EDIT

/ FIND
EXEC I
t TRRNS

COMP

Computer-Aided Prototyping System

■ ■ .■-... . „,

!i^i.-*«ir5Änrö

Figure 2. CAPS and Graph Editor

Figure 3. PSDL Graph

3. Monitoring PSDL Execution

By using PSDL, a CAPS user can create a prototype application. In most cases, a

CAPS user must be able to monitor the prototype's execution. Even if the prototype is

destined to be an embedded application without a Graphical User Interface (GUI), the user

may require a GUI to evaluate the prototype. Alternatively, a user may also require a GUI

to emulate an external environment.

CAPS has built-in diagnostics, which monitor a prototype's execution.

Additionally, CAPS monitors the execution times of the operators. The user will be

notified if timing constraints are violated. CAPS prints data-stream errors and exceptions

during the execution of the prototype.

In addition to diagnostic output, a CAPS user may wish to observe data values,

provide input, and observe simulations. A user can add simple print statements to monitor

execution of a PSDL application. This is traditionally done by adding Ada print

statements to the atomic operator's implementation.

4. Interface Editor

The interface editor is a GUI development tool designed to help the developer

create high-quality user interfaces in a short period of time. If a CAPS user requires more

than just simple print statements in the prototype application, he/she can use the CAPS

interface editor to design a graphical user interface prototype {GUI-prototype). The GUI-

prototype allows a user to display and input information in a window-based environment.

In many real-time embedded applications, the GUI-prototype is only required for analysis.

In most cases, the GUI-prototype does not have timing constraints. It is important that the

GUI-prototype not interfere with the real-time execution of the prototype application.

[Ref. 8][Ref. 9]

5. CAPS Release 1.1 Interface Editor: TAE

CAPS Version 1.1 currently incorporates Century Computing's TAE as the

interface editor [Ref. 8] [Ref. 10]. TAE allows a user to quickly create X-Widows/Motif

based GUI-prototypes. TAE generates C or Ada program code. To create a prototype

application, the TAE-Ada code is linked with translated PSDL.

TAE has some very useful features, including a GUI builder. In addition, the TAE

resource file allows widgets to be interchanged without recompiling the entire application.

Also, TAE allows the building of high-level reusable components. TAE has been

successfully integrated, documented, tested, and demonstrated with the CAPS system.

However, TAE has drawbacks with respect to CAPS. TAE is expensive to

support, license, and to include in the release of CAPS. In addition, TAE is not platform

independent. Also, TAE does not work with all versions of UNIX. Most importantly, the

current integration of TAE alters the TAE event manager. TAE is linked with a prototype

application by removing the infinite loop from the TAE event manager. As a result, the

prototype application is responsible for polling the TAE widgets. This design can make

the prototype application sluggish to user input and slow when displaying data.

For information on how to link in TAE and PSDL consult [Ref. 8]. For

information on how to use TAE, consult [Ref. 10].

B. GUI DEVELOPMENT TOOLS

Graphical User Interface (GUI) design is a field in computer science that has been

changing rapidly in the last ten years. Window-based operating systems have allowed

applications to have sophisticated user interfaces. Unfortunately, user interface software is

often complex, large, and difficult to program. Traditionally, programmers have used

toolkits to develop GUIs. The toolkits use the functionality of the platform's windowing

and operating system. Fortunately, new software development tools are now available to

aid the software designer. A GUI development tool is defined as software to aid in the

creation of graphical user interfaces. Most GUI development tools are based on toolkits to

achieve their look-and-feel. A few development tools do not make direct calls to the

standard toolkits, but emulate the look-and-feel of the toolkits. Figure 4 shows the

layering of GUI software.

Application

GUI Development Tools

GUI Toolkits

Windowing System

Operating System

Figure 4. Components of GUI Software "After Ref. [11]"

The software designer must decide whether to use a GUI development tool or

program manually with just the toolkit libraries. The decision to program with GUI

development tools is better than manual coding in several ways. For instance, most tools

support prototyping, reuse, and code consistency. In contrast, the drawbacks of tools

could include: added complexity, a higher learning curve, added expense, and performance

penalties. [Ref. 12]

Object oriented design and coding has become a fundamental part of most GUI

development tools. Most GUI development tools incorporate abstraction and

8

encapsulation in their design. For example, a software developer may not care to

understand the inner functionality of a widget, but he/she may just need to know the

available methods for the widget.

The GUI development tools can be grouped by the languages supported.

Alternatively, the tools can also be grouped by the platforms supported. The following

paragraphs divide the tools based on functionality. However, many of the commercial

tools do not fit into just one category. [Ref. 12]

1. GUI Toolkits

A GUI toolkit is a library of widgets that can be used to develop user interfaces.

Typical widgets include: buttons, sliders, text-fields, and canvases. Some toolkits contain

high-level widgets, such as pop-up dialog boxes, which aid the developer in creating

common interfaces. The use of high-level widgets maintains a consistent look-and-feel

across different applications. Motif and OpenLook are examples of X-Windows toolkits.

An example of a platform independent toolkit is Artificial Intelligence Applications

Institute's wxWindows [Ref. 13]. It is a free-of-charge library for C++.

2. GUI Builders

Usually a GUI development product contains a GUI builder to construct and edit

the interface. Most GUI builders allow the designer to quickly create an interface in a

What You See Is What You Get (WYSIWYG) mode. A GUI builder allows the user to

easily add, delete, and replace widgets. In many cases, a GUI builder can be used by a

person with little programming experience. In the prototyping process, the ability to

create GUIs in a short period of time is very important. The GUI builders available today

vary in quality, ease of use, and training required.

3. User Interface Management Systems

A User Interface Management System (UIMS) adds functionality to the GUI,

without the user having to program in a high-level language. To achieve this

functionality, some UIMS include high-level scripting languages, which add behavior to

the GUI. [Ref. 14]. Open Software Associates' OpenUI [Ref. 15] and Aonix's Teleuse

[Ref. 16] are examples of UIMSs.

4. Analysis, Plotting, Graphics, and Visualization

Some GUI tools contain graphics and 2D-3D visualization tools. Other tools may

allow the user to analyze and plot technical data in generic formats. Visual Numerics PV-

WAVE [Ref. 17] and Mathworks' Matlab [Ref. 18] are examples. Some tools support

real-time analysis of data. Data Views Corporation's DataViews is an example of this kind

of tool [Ref. 19].

5. Application Development Environments

Application development environments contain a wide range of tools, in addition

to the GUI tools. These products contain tools to aid in the full range of software

development. These tools could include: group-ware, code-analysis, debugging, evolution

control, and real-time control. Visix's Galaxy [Ref. 20] and Sun Microsystem's Visual

Workshop [Ref. 21] are examples of application development environments.

6. Platform Independent Graphical User Interface

A Platform Independent Graphical User Interface (PIGUI) is defined as a software

library that supports at least two different operating systems. [Ref. 22] A PIGUI allows a

developer to create one version of code that runs on multiple platforms. A PIGUI will

10

hopefully decrease the amount of total development time for a project supporting multiple

platforms. The PIGUI can either preserve the native look-and-feel of the target platform

or maintain a consistent look-and-feel across platforms.

There are two types of PIGUIs. The PIGUI can link to the windowing toolkit on

the target machine. XVT Softwares's XVT is an example of this kind of PIGUI. [Ref. 23]

Secondly, a PIGUI can re-implement the widgets for each target platform. Visix's Galaxy

is an example of this type. [Ref. 20] The extra overhead of PIGUIs will generally slow

down the execution of the application. The supported languages for PIGUIs include C,

C++, Ada, Java, and others, but the most predominate is C++. [Ref. 22]

C. DE-COUPLING OF THE GUI

GUI complexity has increased rapidly in the last few years. Users are requiring

well-planned and sophisticated GUIs. The computer applications of the 1960's and 1970's

had simple user interfaces with very little operator involvement. These early computer

programs were mostly one-tier applications. A tier is a component of an application that

is bound through external interfaces to other modules of the application [Ref. 24]. One-

tier applications include all the functionality in one program. This functionality can

include: presentation management, program rules code, and database access (Figure 5).

One-tier applications have the advantage of being easy to design, setup, and maintain. On

the other hand, one-tier applications are not easily scaleable and have inadequate

performance at high volume. [Ref. 25]

W- '^

Application

Presentation management
Program rules code

Database access

Figure 5. One Tier Application

11

The recent development of client/server middleware and Database Management

Systems (DBMSs) allowed the developer to separate the database code from the rest of the

application. Usually, client/server computing involves two or more computers distributing

tasks appropriate to each computer to complete the application. Client/Server computing

has been widely used in database systems. Figure 6 shows a DMBS task communicating

with a database. The DBMS is de-coupled from the rest of the application. [Ref. 15]

Application

Presentation management
Program rules code

I
DBMS

Database access

Figure 6. Two-tier Client/Server Application

The separation of the GUI from the application code has mirrored the de-coupling

of DBMSs [Ref. 15]. In recent years, the GUI has become the most complex part of many

applications. A 1992 study found that an average of 48% of an application code is

devoted to the user interface, and about 50% of the implementation time is devoted to the

user interface [Ref. 12]. In many software designs the GUI is de-coupled from the rest of

the application. Figure 7 shows a three-tier application; the GUI controls the display,

handles user input, and requests services from other tiers of the application.

Multiple-tiered computing has also distributed the tasks of an application to many

remote sites. Distributed applications use client/server protocols to allow the client

application to communicate with a server computer system. Distributed computing makes

the sharing of data and processor resources possible.

12

Client/server computing has advantages and disadvantages. By separating an

application into multiple tiers and incorporating the client/server model, it is modularized;

reuse is promoted; and the computing load is distributed [Ref. 24]. Even if a client/server

application is run on one CPU, it retains the benefits of modularity and reuse. On the

other hand, a disadvantage of client/server computing is communication complexity. The

communication protocols can add CPU load to the design. Also, client/server systems are

harder to setup and design. [Ref. 26]

Graphical
User Interface

I
Application

Logic

I
DBMS

Figure 7. Three-Tier Software Design: Separation of GUI and DBMS

D. EVALUATION OF GUI TOOLS

The number of commercial and public GUI development tools is large and is

growing rapidly. The GUI tools vary in complexity, price, quality, programming language

support, platform support, and adherence to standards. The following issues were

considered in the evaluation of GUI development tools:

Type of Tool: toolkit, GUI builder, UIMS, development environment,...
Toolkits supported: Openlook, Motif, Java,...
Platform independence
Platform support

13

Operating system support
Cost: initial purchase, maintenance
Level of vendor support
Future support of tools
Language Support - Ada, C, C++, Java,
GUI builder availability
Compliance to standards
CAPS integration complexity
Ease of use, learning curve
Ease of installation
Documentation
Complexity
Prototyping features
Visualization tools
Plotting and graphics
Additional tools: maketool, evolution control, debugging, group-ware,

Appendix A contains evaluations of GUI development tools and toolkits.

Additional information about these and other tools can be found in the papers [Ref. 22]

and [Ref. 25].

14

III. DESIGN OF A CAPS INTERFACE EDITOR

A. DESIGN PROCESS

As mentioned in the introduction, this thesis focuses on the development of a new

interface editor for CAPS. The first step is determining the purpose of the work. The next

step is to evaluate the current CAPS' programming environment and determine the

assumptions, goals, and constraints for a new design. Since CAPS is a group effort, this

thesis must maintain consistency with the previously developed applications.

1. Purpose

The purpose of the CAPS interface editor is to allow a CAPS user to create a GUI-

prototype for a prototype application. In addition, the GUI development tools could be

used to port the CAPS tools, such as Graph Editor (GE), to other platforms.

2. Assumptions

1. The CAPS user will be familiar with the capabilities of the
hardware/software platform.

2. The CAPS user will have knowledge of computer window systems.
3. The CAPS user will be familiar with CAPS, PSDL, and the chosen

programming language.

3. Goals/Constraints

1. Goals for an Interface Editor

1.1 The interface editor must integrate into the existing version of CAPS.
1.2 The interface editor must run on a variety of platforms and operating

systems besides SunOS UNIX.
1.3 The GUI tools' licensing costs should be kept to a minimum.
1.4 The execution of a CAPS prototype should not be adversely effected by

the GUI repaint and input events.

15

1.5 The interface editor must be easy to use and be intuitive to a new user.
1.6 The interface editor should contain a variety of high-level widgets to

aid in the development of user interfaces.
1.7 The interface editor should contain a GUI builder tool.

1.6.1 Using the GUI builder, the interface widgets can be added,
deleted, and replaced.

1.6.2 The GUI builder should be able to create high-level widgets.
1.7 The interface editor should require little training.
1.8 The interface editor should be easy to use.
1.9 The GUI-prototype may or may not be part of the static schedule.

2. Constraints
2.1 The GUI integration will be incorporated into CAPS Version 1.1.
2.2 The GUI integration will be developed on a Sun Microsystems Sparc-

10 running SunOS 4.1.4.

B. DESIGN RESULTS - GUI-CLIENT / PSDL-SERVER

When using CAPS, the GUI-prototype is for analysis of design, displaying data,

and user interaction with the PSDL application. Alternatively, a CAPS designer may want

the GUI-prototype to emulate an external environment. The GUI-prototype may not have

real-time constraints or be required in a final embedded system, but it will require CPU

resources. In this case, it is important that the GUI-prototype not interfere with the real-

time execution of prototype application.

As a result, the new design de-couples the GUI-prototype from the rest of the

prototype. The new design contains components from a multi-tier client/server

architecture. The new design creates a GUI-client that communicates with a PSDL-server.

A GUI-client is defined as a GUI-prototype, which is de-coupled from the PSDL and

executes on a client processor. A PSDL-server is a PSDL application, without a GUI,

which executes on a server processor. With this design, a user can create the GUI-client

with any programming language and GUI development tools. The client/server

architecture allows the GUI-client to be located on a local CPU, while the PSDL-server is

running on a remote CPU (Figure 8). The GUI-client event model can be retained by

running the PSDL-server on a different CPU. Also, the real-time schedule of the PSDL-

16

server is not affected by the GUI-client. In addition, the design allows the GUI-client to

be compatible with existing CAPS Version 1.1 software.

The client/server communication is possible with a variety of middleware

solutions. The simplest middleware solution is sockets.

client/server communications

CPU

API*-* PSDL-Server

(Real-time Application)

Figure 8. Multiple CPUs CAPS Client/Server

Alternatively, the client/server design could be implemented on one CPU if the

processing of the GUI-client is taken into account. For this purpose, a prototype

application could be run on one CPU by using synchronous communications between the

GUI-client and the PSDL-server as shown in Figure 9. As a result, the synchronous

communications could prevent the GUI-client from taking CPU resources during the

execution of the PSDL-server.

Threads could be used to implement the one-CPU design. The first thread could

execute the PSDL-server, while the second thread handles the GUI-client during non-

critical times. Also, a single workstation with multiple CPUs could be evaluated.

Problems with the client/server design include: increased overhead and network

traffic. A dedicated network will minimize the amount of network traffic. Another

17

problem with a CAPS client/server design is the added complexity in the overall CAPS

system.

Single CPU

GUI-client API

client/server
synchronous communications

API PSDL-server

(real-time application)

Figure 9. One CPU CAPS Client/Server

18

IV. IMPLEMENTATION CONSIDERATIONS

A. SELECTION OF GUI TOOLS

I spent approximately six months evaluating and selecting GUI development tools.

There are over a hundred commercial tools available. In addition, many universities have

departments that are doing GUI research, and they offer their GUT development tools free-

of-charge. Appendix A describes the evaluated tools. The following tools are considered

as possible choices for integration in CAPS.

1. Fresco

Fresco is an object-oriented development toolkit for the development of user

interfaces[Ref. 27]. Fresco is a design evolution from Stanford University's Interviews

toolkit. Fresco was developed at Fujitsu's Faslab in conjunction with the X-Consortium.

The Opengroup's X-Windowsll-V6 (Broadway) contains a sample implementation of

Fresco. [Ref. 28]

Unfortunately, Faslab discontinued support and development work on Fresco in

late 1996. Also, the software community has failed to widely use Fresco. For these

reasons Fresco was not integrated into CAPS.

2. Java Development Kit

The Java programming language, developed by Sun Microsystems, is being hyped

as a replacement for C and C++. The Java programming language is becoming the

programming language of choice for many internet and standalone applications [Ref.

29] [Ref. 30]. Java is not a GUI development tool, but only a language and toolkit.

Fortunately, many vendors are now selling complete GUI development environments for

Java. Additionally, many traditional Motif development tools are now supporting Java.

19

Java is an object-oriented, distributed, interpreted, secure, platform-independent,

and multithreaded programming language. Unlike most languages, Java has automatic

garbage collection. Java has client/server protocols included in the language's API. In

addition, Java has a built-in Abstract Window Toolkit (AWT). The AWT can be

considered a PIGUI because it runs on mulitple platforms without program modification.

The Java AWT also supports the native look-and-feel of the target platform.

Consequently, many universities are now offering Java as the introductory

programming language instead of C++. Appendix A contains more information about the

Java programming language and development tools.

A GUI-client written in Java would allow the interface to run on almost any

platform and communicate with a PSDL-server. Java was selected to test integration with

CAPS.

3. Visual Workshop / X-Designer

Sun Microsystems' Visual Workshop and Imperial Software Technology's (1ST)

X-Designer are X-Windows/Motif tools for UNIX platforms. Visual Workshop

incorporates IST's GUI builder (X-Designer) into its product. Both tools provide about

the same functionality. The tools create Motif X-Windows code written in C and C++.

Ada95 can be generated with OC-Systems' XDA attachment. Visual Workshop was also

selected to test integration with CAPS. [Ref. 21][Ref. 31]

B. SELECTION OF CLIENT/SERVER MIDDLEWARE

The number of techniques for implementing client/server middleware is very large.

Many vendors are trying to sell their products and create standards. The products include:

Sockets, CORBA, CGI, Netscape's Caffeine, Java-RMI, and Microsoft's DCOM.

20

1. Sockets

A socket is the basic protocol for client/server communication over TCP/IP stacks.

Sockets were originally introduced in 1981 for UNIX BSD 4.2. Sockets are available on

almost every operating system. Sockets are available in several forms: datagram, stream,

and raw. The most common socket API is the Berkley UNIX C protocol. Sockets can

also be used for communication on a single computer. Figure 10 shows a typical sequence

for establishing a client/server connection. Sockets are the basis for most higher level

client/server middleware. The socket programming model is quite primitive, but it is very

fast and a well-known standard. Sockets were implemented and evaluated as a possible

middleware between the PSDL-server and the GUI-client. [Ref. 32][Ref. 33]

I Server

socketO
bindQ
listenO

' acceptO /* wait for request */"
Begin thread

Loop for next request

recvfromO
sendO
closeQ

socketO
Client

connectO
sendtoO /* write data */
recvfromO /* read data */
closeQ

Figure 10. Client/Server Scenario

2. Common Object Request Broker Architecture (CORBA)

CORBA is a middleware project being developed by the Object Management

Group (OMB) consortium, consisting of over 700 companies. The notable exception to

21

this group of companies is Microsoft, which has a competing product called the

Distributed Component Object Model (DCOM). CORBA could replace all other

implementations of client/server middleware. In CORBA client/server computing, objects

cooperate over the network as opposed to cooperating processes. [Ref. 32] Specifications

for CORBA objects are written with the Interface Definition Language (IDL). DDL

provides operating system and programming language interfaces to other services on the

CORBA bus. CORBA allows almost any programming language to communicate over a

network as show in Figure 11.

(C\ (C++\ /Ada\ /java\

| IDL | | IDL | j IDL | | IDL | | IDL j | IDL | | IDL | | IDL |

Client Server

Object Resource Broker (ORB)

Figure 11. CORBA

C. PSDL-SERVER - SOCKET - GUI-CLIENT

In this implementation, A GUI-client, written in Java or Motif, communicates with

a PSDL-server by using TCP/IP sockets. Figure 12 shows the implementation of the

design. Demonstrations of the implementation are described in the next chapter. The

source code for the demonstrations is in Appendix B.

The PSDL Ada atomic operators bind to a C module that implements the server

side of the socket connection. The server socket is written is C because of the difficulty in

implementing sockets with the VADS Ada83 compiler.

22

A protocol is established for passing a data structure between the GUI-client and

the PSDL-server. An example communication data structure is shown below:

struct CapsData {
char command_number;
intil
int i2;
charbuffer[SIZE];

}

At present, the communications data structure is modified for each new

application. A more generic data structure should be designed to work with all prototype

applications. The client/server communications in the demonstrations are synchronous.

Asynchronous communication may also be used, but care must be taken to avoid data-loss

or deadlocks. The implementations are multithreaded. One thread in the GUI-client is

devoted to the socket communication.

CPU

GUI-client
(Java.Motif,...)

Window
Thread

Client
Thread

API

rclient/server
socket communications

CPU

API +—►

PSDL-server
(real-time application)

C Server Ada

Figure 12. CAPS-Socket-GUI

23

1. Java GUI-client

The GUI-client was implemented using the Java programming language. The Java

GUI-client can be created with the Java development kit or designed with development

tools, such as Symantec's Visual Cafe [Ref. 34]. The Java GUI-client can either be a

standalone application or run as an applet in a network browser. The Java implementation

is multithreaded. Unfortunately, programming Java threads can be difficult. The Thread

Scheduling Model, which is platform dependent, determines the thread that will be running

at any given time. Some operating systems use preemptive scheduling and others use time

slicing. Consequently, the programmer must carefully design the application so that it is

still platform independent. The code for a Java implementation is in Appendix B.

2. Motif GUI-client

Another GUI-client was implemented in Motif using Visual Workshop (Version

3.) for a Sun Microsystems' workstation. The GUI-client is also multithreaded. The code

for a Motif implementation is included in Appendix B.

D. PSDL-SERVER-CORBA- GUI-CLIENT

CORBA has the potential of making middleware transparent to the application

programmer. In this thesis, the CORBA middleware was not fully implemented. A

CORBA interface is written in IDL. An example IDL interface between the PSDL-server

and the GUI-client is as follows:

//IDL
interface Capsdata {

attribute int ix;
attribute int iy

24

int repaint()
int readdataO
int writedata();

25

26

V. DEMONSTRATIONS OF NEW DESIGN

A. ROBOT CONTROL SYSTEM

This demonstration reworks a CAPS project originally developed in CS4920

(Spring 1996). The project developed a software prototype for a robot control system.

The prototype was developed using CAPS Version 1.1. This demonstration uses a socket

to connect the GUI-client with the PSDL-server.

1. Requirements for Robot Control System

The robot moves on a friction-less table using air bearings, and is equipped four

compressed air thrusters that are aligned with the directions of the coordinate axes (+x, -x,
+y> -y). Opposing thrusters should never be both turned on at the same time. Thruster

force can be continuously varied under computer control. The maximum thrust from each

thruster produces an acceleration of 1 meter per second per second. The software is

supposed to provide a "soft landing" capability for the robot. In the test bench for the robot

control software, the initial positions (x and y coordinates of the robot) and initial

velocities (x and y components of its speed) are specified as input. The controller is

supposed to bring the robot to a stop at a position less than 2 cm from the origin of

coordinate system. The robot must never get closer than 1 cm from the origin, and it must

stay within the border of the table (-1 meter <= x <= 1 meter and -1 meter <= y <= 1

meter). The initial position must be a legal position, and both components of the initial

velocity must not exceed 1 meter per second.

2. Robot: PSDL-server

CAPS (Version 1.1), running on a Sun Microsystems' Sparc 10 (SUNOS 4.14),

was used to implement the demonstration. The PSDL for this demonstration is simple, but

27

contains time-critical operations. Appendix B contains the source code for the PSDL-

server. Figure 13 shows the Robot PSDL graph. The operators bop_display and

bopjnput are atomic operators implemented in Ada. These operators bind to a C program

that implements the server connection. The atomic operator bop_display sends data to

GUI-client while bopjnput requests input from the GUI-client.

^—.■,vc^£h-yi£W3i!.

»■M.l.1...l,l,|..il.»l.1.l.l.lWJUliA'l»Ai^JMA'««M^^

I

Figure 13. Robot PSDL Graph

Code fragments for the PSDL-server are shown below. The file ada.h contains the

data structure that is passed between the GUI-client and PSDL-server. The file

"bopdisplay.a" is source code for the atomic operator bopdisplay. This atomic operator

passes display data to GUI-client. Inside "bop_display.a", the function call socket()

passes the data structure to the GUI-client. The file "socket.a" contains the source code

28

for socket(), which binds to the C program "server.c" which performs the actual socket

connection, socket binding, and data transfer.

FILE : ada.h

typedef struct {
int ix;
int iy;
int ir;

} Rec, *Rec_Ptr;

FILE : socketa

--pkg
package body socketPKG is

al : FLOAT;
bl : FLOAT;
type Rec is record

ix: Integer;
iy: Integer;
ir: Integer;

end record;
type RecPtr is access Rec;
I: RecPtr := new Rec;
pragma LINK_WITH ("server.o");
procedure server(I: in Rec_Ptr);
pragma Interface (C, server);

procedure Socket(xx: in out Float; yy: in out Float;
ireq: in out INTEGER) is

begin

server(I);

end Socket;
end socket_PKG;

—FILE : bopdisplay.a

with pvadataPkg;
with socketPkg;
use socketPkg;

procedure bop_display(bnss_pva_data: in pvadataPkg.pvadata) is
begin

29

socket(ßc,fy,ix); — Send the x,y position to the GUI-client,

end bopdisplay;

3. Robot: GUI-Client

The GUI-client can be written with almost any language and GUI development

tools. A GUI-client communicates with the PSDL-server.

a. Java

The Java GUI-client was developed on a Sun Microsystems' UltraSparc

(Solaris 2.5) and a Windows95 PC, using the Java Developers Kit (Version 1.1). In

addition, Symantec's Visual Cafe (Version 1.0) was used to develop the GUI-client. The

Java program can be designed for a browser or as a standalone application. Figure 14

shows a Java-applet version of the GUI-client. The source code for the applet version is in

Appendix B. The Java applet is being displayed in a Netscape browser. The Java program

is multithreaded. One thread responds to read/write data via the socket, while the other

thread waits for user input and paints the screen.

The Java program has various controls. The "Restart" button reinitializes

the socket connection. The "Zoom" button changes the aspect of the view. The user can

enter the initial x, y, x-velocity, y-velocity. The user can also drag the robot to a new

starting location.

b. Visual Workshop

The GUI-client was also implemented using Sun Microsystems' Visual

Workshop version 3.0. running on a Sun Microsystems' Sparcstation-20 (Solaris 2.5).

The GUI-client is very simple, but it does contain a thread to read/write data from the

30

PSDL-server. Figure 15 shows the Visual Workshop GUI builder, with the GUI-client

loaded. Figure 16 shows the Visual Workshop version of the GUI-client.

r£j Netscape: CAPS Robot Lander Craft - Client/Server JAVA JDK

File Edit View Go Bookmark« Option« Directory Window Help

B*»k I '.FOWSAS Hoiftft« xReJosmJ Images Open Print' ?Find.;s V.-Vf-

Go To: 1 lajnder.html

WhaT«Hew?| WhaPoCool?| fion»| Netsearch| People] Software

,JkM *Hi-x*nM-"v*.mr~mi*rtr*«,*.A*—*r<,>~- ~ fijj £J

Figure 14. Java GUI-Client

31

fr Workshop Visual: bp2joT

Rle Eist View Mette Wdget Module Generate Toots He'P

* Composite

a:Dl4l
^? :-r-:

"i jii 1 >

■ ii _J_i~J

rn

HD 55
» Primitive

■be aha.-|l |*bci

~J -S:P~
V«bo

r :F

I» M a*o K©(S> i-jj 9 tfldPfe
Widget name:](bruce_drawing)

Variable name:

| bpjshell

!baice_drawing

n
bp shell
,-?..

message Box 1

 J*<Ü jbcj jibej l^l If
separator! bruoe_button butlon2 button3 bruce_drawing menuBarl

! Ö 1

jbc&| abcdl

cascadel cascade2
Ö ö

ffj JU
menul menu2

abo| «bo|

buttonl buttor>4

i.i-

Figure 15. Visual Workshop GUI builder

32

File 'Edit!

 bp^

WM^M^^^^^^BM

Restart

Figure 16. Visual Workshop GUI-Client

33

B. SMARTSHIP PROJECT

The Smartship Project commenced in December 1995 in response to the CNO's

review of the 1995 Summer NRAC study which focused on reduced manning. The study

concluded that major reductions in manning could be achieved by design in new

construction ships. Commander Naval Sea Systems Command responded to the CNO's

desire to focus on existing operational ships. The overall goal is to reduce workload,

improve mission readiness, and maintain safety at minimum cost to the government. A

Naval Postgraduate School thesis "Smartship Project Modeling", by Nolan Ruiz, is trying

to determine if an effective modeling approach for the Smartship project can be found. In

addition, it tries to determine if the current Productivity Allowance is valid. [Ref. 35]

This thesis will look at possible user interfaces, using the GUI-client/PSDL-server

design, that could be used with the Smartship project. A socket is usedto connect the

GUI-client with the PSDL-server. This demonstration will contain only preliminary

results, but Nolan Ruiz's thesis will contain a complete prototype.

1. Smartship PSDL-server

The Manpower/Workload profile of a ship's Communications Division was

evaluated. Tasks can either be periodic or sporadic. Periodic tasks include: Station

Watch, PMS Actions, and Field Day. Sporadic tasks include: Underway Replenishment,

Vertical Replenishment, General Quarters Drills, Fire Drills, Security Drills and Training.

CAPS (Version 1.1), running on a Sun Microsystems' Sparc 10 (SUNOS 4.14),

was used to implement the CAPS demonstration. The top-level PSDL graph contains the

following composite operators: SHIP, NAVSEA, and USER. The SHIP composite

operator can be broken down into periodic and sporadic tasks. Figure 17 is the PSDL

graph for the SHIP composite operator. The data flow between the operators (the periodic

and sporadic tasks) is in man-hours.

34

Graph Viewer

IB1

> J

j-i'fiiiii mi. iTiT-fifMltiHrgiiiiifiiiShT-

Figurel7. Smartship PSDL

2. Smartship GUI-client

The Java GUI-client was developed on a Sun Microsystems' UltraSparc (Solaris

2.5) and a Windows95 PC, using the Java Developers Kit (Version 1.1). In addition,

Symantec's Visual Cafe (Version 1.0) was used to develop was used to develop the GUI-

client. Figure 18 is a Java version of a GUI-client for the Smartship prototype.

35

u Workload Profile-Communications Div.

File

Restart] I

jeld Day 1
I
vert

nderway Replenishment

ical Replenishment

ManPower<yiQrt|aj^^

Figure 18. Smartship GUI-client (Java)

36

VI. CONCLUSION

A. SUMMARY OF DESIGN AND IMPLEMENTATION

The client/server design allows a PSDL-server to communicate with a GUI-client.

The design is successful in decreasing the coupling between the GUI-client and the real-

time prototype application. The GUI-client can be created with almost any GUI

development tools. In addition, the design allows the GUI-client to be located on a local

or remote CPU. The GUI-client can be unbound or bound to the real-time schedule of the

PSDL server.

The demonstrations, using a variety of commercial products, show the successful

implementation of the design. In addition, the proper use of threads and GUI-

client/PSDL-server communications (synchronous/asynchronous) is very important. If

implemented properly, the client/server middleware does not effect the performance of the

prototype.

Although this thesis did not finish the integration of a new interface editor in

CAPS, many GUI development tools were evaluated for possible integration. The

client/server design increases the number of GUI development tools that can be used in the

CAPS environment. The Java development tools were determined to be the best tools

available to use with CAPS. The reasons to use Java include: low cost, abundance of

tools, popularity, language features, and platform independence.

The largest obstacle for implementation of the design is the client/server

middleware. For a first implementation, sockets were able to provide the required

functionality, but the socket programming model is very primitive. Therefore, a higher

level product must be chosen. CORBA, with Ada, C, C++, and Java interfaces, could be

used to implement the client/server middleware.

37

B. FUTURE RESEARCH

In the course of work on this thesis, many ideas came forward, but were not

implemented. A great deal of time was spent on the evaluation of GUI tools and

middleware. The following is a list of ideas for future work.

1. Selection of Middleware

In addition to sockets, other middleware should be investigated. CORBA was only

partially investigated in this thesis, but it could be used to connect atomic operators

written in Ada to a GUI-client. Other middleware to investigate include: Java's RMI,

Microsoft's DCOM, Netscape's Caffeine, RPC.

2. Selection of GUI Development Tools

A GUI development tool should be selected for full integration into CAPS. In

addition, a PIGUI would aid in the porting of the other CAPS tools.

3. Further Demos

New applications using the new GUI-client/PSDL-server design should be

demonstrated. Previous CAPS applications could be ported and their performance

compared. Implementations using a single CPU could be evaluated.

4. Socket Communications

If sockets are used, the server-side and the client-side source code could be

automatically generated. The data structure for passing data between the GUI-client and

PSDL-server could be standardized.

38

Several protocols exist for socket communications. The socket protocols should be

compared to find the most efficient method of communications.

This thesis implemented the PSDL-server by binding the Ada83 code to a C

module. The C module implemented the socket communication. Ada95 should be able to

implement a socket connection.

5. JavaBeans

A bean is a reusable and interchangeable Java component. Even though JavaBeans

are a new technology, many vendors are now selling JavaBeans tools. It might be possible

to create a Java-Bean GUI-client automatically in the CAPS Graphics Editor (GE).

39

40

APPENDIX A. EVALUATION OF GUI TOOLS

GUI TOOLKITS

Product Name: Java Development Kit
Vendor: Sun Microsystems

2550 Garcia Ave.
Mountain View, CA 94043 (800) USA-4SUN
http://www.javasoft.com

Type of Tool: Language, Library
PIGGUI: Yes
Supported Platforms: Window95/Nt, Macintosh, UNIX
Cost: Free
Vendor Support: Yes
Future Support: Lots of current development
Languages Supported: Java
GUI builder available: No - See third party developers
Comments: Java is an object-orientated, multithreaded, and portable programming

language. The Abstract Window Toolkit (AWT) is a built-in library for
creating window components. Java has built-in garbage collection. A
great deal of work is being on and with Java, but the language is in a
state of flux. The class library is very comprehensive, but lacks the
high level GUI object or dialog objects. Many third parties are
developing these high level objects. Unfortunately, Java is currently
slower in execution speed than other languages, but Sun Microsystems
and other vendors are developing compilers that should bring the
performance of Java close to other languages. The loading of the Java
AWT software on a Sun Microsystems Sparestation (Solaris 2.5) and
Windows-95 was very easy. Linking directly with CAPS would be
difficult. A client/server interface with CAPS was completed in this
thesis. [Ref. 29] [Ref.30] [Ref. 36] [Ref. 37]

Table 1. Java Development Kit

41

Product Name: Fresco
Vendor: Fujitsu FASLAB

800 El Camino, Suite 150
Menlo Park, CA 94025 (415) 325-6015
http://www.faslab.com

Type of Tool: Toolkit, Similar look-and-feel of Motif
PIGUI: Yes
Supported Platforms: Windows95/NT, UNIX, Linux
Cost: Free
Vendor Support: None, the vendor has completed the research
Future Support: The research on Fresco at FASLAB has be completed. No future work

seems to be planned.
Languages Supported: C++
GUI builder available: No
Comments: The Opengroup's X11-V6 (Broadway) contains a sample

implementation of Fresco. Fresco is user interface system specified
using CORBAIDL. Even though it is included in the latest version of
X-Windows, Fresco is not yet a standard. Fresco is a PIGUI, but it
does not support the native look and feel. Loading Fresco on Sun
Microsystems Sparestation (Solaris 2.5) was fairly simple. A tutorial
walks a new user through examples. FrescoVFX is a fairly complete
example of what Fresco can do. Fresco has very little low level
documentation and the software library still seems buggy. There is no
documentation on how to put the components together into a final
product. Fresco could possibly connect to CAPS via a client/server
approach. [Ref. 27]

Table 2. Fresco

Product Name: wxWindows
Vendor Artificial Intelligence Applications Institute University of Edinburgh

80 South Bridge
Edinburgh Scotland Phone: 0131 650 2746
http://web.ukonline.co.uk/julian.smart/wxwindows.com

Type of Tool: toolkit library
PIGUI Yes
Supported Platforms: Windows/UNIX(Solaris)
Cost Free
Vendor Support: None
Future Support: ?

Languages Supported: C++
GUI buildeT available: Yes, wxBuildeT, Sun Microsystem's Devguide
Comments: WxWindow is a C++ user interface library. It appears to be one of the

best toolkits that is free. Loading wxWindows on a Sun Microsystems
Sparestation (Solaris 2.5) was difficult. The GUI builders are not very
well documented. The class libraries have a lot of features, but learning
all the classes and methods is difficult. CAPS could interface to
wxWindows via a client/server protocol, but linking wxWindows into
CAPS would be very difficult [Ref. 13]

Table 3. WxWindows

42

B. GUI BUILDERS

Product Name: UIMX
Vendor: Black & White Software (Resailer)

2155 S. Bascom Ave.,
Campbell, CA, 95008, 408-369-7400
http:/www/vedge.com

Type of Tool: GUI-Builder (Motif)
PIGUI: No
Supported Platforms: UNIX
Cost: -$5000
Vendor Support: yes
Future Support: yes
Languages Supported: C, C++, Ada (add-on product)
GUI builder available: Yes
Comments: UIMX (Figure 19) is a very popular GUI builder. It is resold under

many different vendors. Integrated products can include: ORBIX for
client/server, Cross-platform toolset (windows), Ada. [Ref. 38]

Table 4. UTMX

p§ (at p*r J£*

^^J^rj-j
£ÜUj||fe||

Ijmyxy.aoi:
&^«jwm§&l?igtm\ OptW:;"jji*i-Tool»'

3Big£9i;.&Slflf£

-.-. •S^.K.-—<J.

Figure 19 UIMX "From Ref. [38]'

43

Product Name: X-Designer
Vendor: Imperial Software Technology

US Office
120 Hawthorne Avenue Suite 101
Palo Alto, California 94301 (415)688-0200
http://www.ist.co.uk

Type of Tool: GUI-builder (Motif, Java)
PIGUI: No, Yes for Java
Supported Platforms: UNIX platforms are supported
Cost: -$3000
Vendor Support: Yes
Future Support: Yes
Languages Supported: C, C++, Ada (with XADA), Java
GUI builder available: Yes
Comments: X-Designer (Figure 20) is a Motif development environment. With

OC-Systems' XDA, it is possible to convert the output of Visual-
Workshop to Ada. X-Designer is repackaged in many other 3rd party
applications (Visual Workshop and DataViews). [Ref. 31]

Table 5. X-Designer

=3- X-Designer: desigP-fUe-xd
Flic Edit View Palette WMjet Module Generate

She!
I Row
I Column

T)M«*, /|°2^ ü|ä
Pmann p*l|8uiefln fp=i| Fie

Menu I—11 Board trr,|Stlee8on

P«ne<J waoetnemejifami)
Window i

Variable name: jjorm
Scrolled
window

□

Redo
Box Fon»

Xjlcatcao« TflT«
Ji3| Button 11 |Fmd

Seroied
Ten

List

Scroted
»El ist

te^XtttojNeaOiaioe,

n
Be
irari

m
T i (t*-*- *- i

cv»n_b *iaT_b eut_b aopyjb

FT

Figure 20. X-Designer "From Ref. [31]'

44

Product Name: Visual Cafe
Vendor: Symantec Corporation

10201 Torre Ave
Cupertino, CA 95014 (408) 253-9600
http://symantec.com

Type of Tool: GUI-builder, (Java AWT)
PIGUI: Yes
Supported Platforms: Winows95/NT, Macintosh
Cost: $199
Vendor Support: Yes
Future Support: Yes
Languages Supported: Java
GUI builder available: Yes
Comments: Visual Cafe (Figure 21) is development environment for Java..

Loading on Window-95 was very easy. Symantec has a variety of
products, including tools to link Java to databases. Linking directly
with CAPS would be difficult. A client/server interface with CAPS
was completed in this thesis.[Ref. 34]

Table 6. Visual Cafe

mmsMMmsammm
Eta E« i~» a*uo t~M HMo» tt*>

1-IDIXI

aj.!,l.!.l,!J.IIII,l>.'IM—|pnp

^jStckSho»

^ MoOTgAranMon
.* E*fca20
SFMMO*

baagtfM
AJNvMutlM

JSmM

.||VMc4ScMb«
J.L«

ll-l,1 ■IBI.MI 3

;Hirf*'
Visual
Cafe

Online Coffee Shop
b I.

[OllMI HMO«! ¥090Un
, W. •],'e ~:j MoMdt

1 - «ntt .a
1 UnMCoMt 'g.'jDiu

««MS** | . » UM
1 JfcdoCfe « buacn2
leB""«' i ♦ ta«onuBl*r1
i • AWTEn Zj

UciLü

pifclle void lalto (
•uper.lBLto:

/f ToKe out tnlo Hoe i: vou
. . *vasnc*c.ltooLs.laika.CoBt*xt

UlJ WowiM Marina' -; ;—T j

dott' t uae
■■TftorMMl*!

i&il—Scat

IKJ^J^^Q^^

fwft wACmponM

UJ

•*^B»'ÜiWE*;55tW^S«Ära

IIZSB

Piopeity Lilt - Apptetl HHI3

■O* haBOIUfildeil

.;»*»._

^
■ Tlpl»ll

p»t«NiChm

<:;

<■

^
»»H g«^.. [lev—*'£**«-"■*■■»*. ^»UJWv..» <«c*«va».|

Figure 21. Visual Cafe "From Ref. [34]'

4i 1252 PM

45

Product Name: Builder Xcessory
Vendor: Integrated Computer Solutions

Cambridge, Mass. (617) 621-0060
http://www.ics.com

Type of Tool: Motif and Java Gui Builder
PIGUI: No (Motif), Yes (Java)
Supported Platforms: UNIX: DEC,HP,IBM,SGI,SUN
Cost: $3500
Vendor Support: Yes
Future Support: Seems Good
Languages Supported: Java,C,C++,Ada
GUI builder available: YES
Comments: Builder Xcessory (Figure 22) is a popular GUI builder. Version 4.0

supports code generation for Motif and Java (applets and applications).
The tool can be integrated into Pure-Atria's ClearCase evolution control
products. There is support for Ada in Version 3. The support for Ada
is limited to Sun Microsystems platforms and only with the Rational
and SunAda compilers. [Ref. 39]

Table 7. Builder Xcessory

'^B/nqwserg
^Wtfafg^WiiriifirSr^

Rte Edit View Pjtjject Options Managers Windows **>

Delete

awtlabell

g]redS6der|

&llg!frt»ejgt f- ggreenSfcter

■gJMueSMer

^ffi «wtPane)|—awt Canvas |

fcmB^!!BWS!aH9SS»WKÖWlW!^

Palette JQ
<NW UMHI

Uat Soot»

Ctaowox

II
Mt

Figure 22. Builder Xcessory "From Ref. [42]'

46

USER INTERFACE MANAGEMENT SYSTEMS

Product Name: OpenUI
Vendor: Open Software Associates

20 Trafalgar Square
Nashua, NH 03063 (800)441-4330
http://www.osa.com

Type of Tool: UIMS
PIGUI: Yes
Supported Platforms: Winows95/NT, UNIX, Linux
Cost: -$4000
Vendor Support: Yes
Future Support: 9

Languages Supported: C.C++
GUI builder available: Yes
Comments: Open Software Associates main office is in Australia, but there support

of their product is very good. OpenUI (Figure 23) has built in
client(GUI)/server(LOGIC) application development. A user one must
learn their interface language (OPL) to complete a user interface. C,
C++ is used to bind to application code. ADA is longer supported.
OpenUI would be useful for large project.
[Ref. 15][Ref.40]

Table 8. OpenUI

47

2
File Edit View Itedule jTools Help

OpenUI IDE-bp3

m& a & E&& 5*| «5 Al
K zF Span p^"|j|F~|j Stretch [F~|j|F^|j

u Classes

[Pointer]

A

Ü0 CX| J

•v lall □
to D C3

Q V 1/

L& CP —

I ITCT EX

GD 3 ®
© IS Gäü

JSL (17 PRl |

Figure 23. OpenUI "From Ref. [43]"

48

D. APPLICATION DEVELOPMENT ENVIRONMENTS

Product Name: Visual-Workshop 3.0
Vendor:

Type of Tool:
PIGUI:
Supported Platforms:

Cost:
Vendor Support:
Future Support:
Languages Supported:
GUI builder available:
Comments:

Sun Microsystems
2550 Garcia Ave.
Mountain View, CA 94043
http://www.sun.com

(800) USA-4SUN

GUI-builder / Development Environment (Motif)
NO
Solaris2, Other UNIX platforms are supported with Imperial Software
Technology's X-Designer.
-$3000
Yes
Sun Microsystems is a leader in this market.
C, C++, Ada (with XADA)
Yes
Visual-Workshop (Figure 24) is a Motif development environment that
includes Imperial Software Technology's X-Designer (GUI-builder).
Visual-Workshop is a complete engineering environment with a GUI
builder, debugging tools, and evolution control tools. Installation of the
software was very easy. A demonstration version can be downloaded
and evaluated. The GUI builder is very easy to use. Linking directly
with CAPS would be difficult, because of the event manager. A
client/server interface with CAPS was completed in this thesis. With
OC-Systems' XDA, it is possible to convert the output of Visual-
Workshop to Ada.
[Ref.21][Ref.41][Ref. 42][Ref. 43]

Table 9. Visual Workshop

49

MakeTool

SPA Reworks Manager

File v) (View 7) (Edit v) (Properties'?) (Session ?) (About..)|~]

m 0»
SBrowser File Merge Maketool Debugger Analyzer

m H m ffl K CodeManager Version Tool Parade (Make FreezePoint Visual

loopTool ThrAnalyzer LockL.nt

Maketool (1) Is Running...

SPARCworks/VKual: cdplayerjcd

de Ml ttew PeJeUo Module GnwaU

Hgiij a ja u^m
nil—I Al w,a«*t"«B«:|ic*«da«"3D
 ' ——' VHUtM Maw: |faMg«l»

^ r*-".\ I ... - -

^ I enaj

aois
EEJI c±lj 31

■MI
ra|g)Tj
oj^JT]

*JJSr

-1 PT" Sourcalrowsar ClusCraphsr

(Enema?) (UI«WT) (Edit?) (Que^

(*dd Hod«) brkli

kad.bt«rli<a.bkxli tall »«dot

^
. brtrt ttbb

ima—
Graph: 6 nodes. 5 f

Deb099er - Sort

(Program 7) (Breakpoint ?) (ExecutionT) (Stack v) (Data g) (Props-

Directory: Q /home/dpdemoAort-MT

-►Stopped In File: Sort« Faectlea: Qute.task Line: 546

(stop at) (stop In) (clear) (run) (com) (next) (step) (where)

(print*) (print) (up) (down) (display ■) (display) (Ibt-a

(debugger) cont
continuing all tw>s
Sleultaneous events In:
(debugger)

tM Oo3) t« (1*4)

State: Stopped ,

XEmacs:/oot/SUNWspro/oin/iie«acsIlS.U KEnwcs) Sortxc

FMUtVlMM OeolM I 1 VMCWH *C[T«B!*MI:; .i»»»i»otc~ Me»|

rotor« running.tort«; }

•Mid r**«**itJuJ«_t«*l (ust color]

•♦©C 1f <»*print_count[color • tf >: orint.tnro*Mlo) (
prmucounttcolof • 1) : l;
or wit_acco»e« (color); }

If (-»roocftee_cevntC».er - l] >i r—cr+*„W***H> <
r*KM4_eount[eaier • lj : t;

Fontifytnp, SOM.CC... done.

Figure 24. Visual Workshop "From Ref. [21]'

50

Product Name:

Vendor:

Type of Tool:
PIGUI:
Supported Platforms:
Cost:
Vendor Support:
Future Support:
Languages Supported:
GUI builder available:
Comments:

Galaxy

Visix
11440 Commerce Park Dr.
Reston, Virgina 22091
http://www.visix.com

(800) 832-8668

Application Development Environment, GUI-builder
Yes
Win/NT, UNIX
$9600
Yes
Yes
C,C++
Yes
Galaxy (Figures 25, 26) is complete software engineering environment.
Galaxy is an emulated API. An emulated API does not require high
level toolkits to compile the program. For example, when Galaxy
emulates Motif, Galaxy does not have to link in Motif libraries. A
benefit of the emulated approach is that you can try out a Macintosh
look-and-feel on a UNK workstation. It also has a full range of other
tools including: image and color editors. [Ref. 20]

Table 10. Galaxy

51

Figure 25. Galaxy (Motif) "From Ref. [20]'

52

Visual Resource Builder
Ble Edit Eanels jflfindows

C:\hal\vrgp.vr

JSfiSL lfllfi_ ftontente

Dialog - "Main" - vdialog

1 nil CAM-

VJews .Options
> 03 About Box /

> E App Prefs (

> § App Space >| Color Method: | HLS ljt|

> 0 Cursors

t> B Default Val;

t> SB Image Lib

Color Chooser
View Options Tools

)le of Contents

i Mnemonic X: 17 Y:|9B

r Border
r Image Mask

[x Background Set Color-!]

S'Image

lx Cursor

Set Image-

Set Cursor-

Figure 26. Galaxy (Windows) "From Ref. [20]'

53

E. OTHER GUI TOOLS

Product Name: DataViews
Vendor: DataViews Corporation (formerly VI Corp)

47 Pleasant St.,
Northampton, MA 01006 (413)586-4144
http://www.dvcorp.com

Type of Tool: Data Visualization for Real-time applications (Motif)
PIGUI: ?
Supported Platforms: UNIX- Deployable on (VMS, Window-NT, Window3.1)
Cost: -$18,000
Vendor Support: yes
Future Support:
Languages Supported: C, C++, Fortran, Pascal
GUI builder available: yes, an enhanced version of X-Designer
Comments: Dataviews (Figure 27) is a data visualization tool for real-time

applications. [Ref. 19]
Table 11. Datavews

Figure 27. DataViews "From Ref. [19]

54

Product Name: Matlab
Vendor: The MathWorks, Inc.

24 Prime Park Way,
Natick, Mass, 01760 (508) 653-1415
http://www.mathwork.com

Type of Tool: Numeric Computation, Graphing, and Visualization
PIGUI: Partially, many programs can be run on different platforms with no

change.
Supported Platforms: UNIX, Window95/NT, Macintosh
Cost: Varies on Platforms and options
Vendor Support: Yes
Future Support: Yes
Languages Supported: Script Language, can be bound to C
GUI builder available: Yes
Comments: Matlab (Figure 28) is a popular signal processing and visualization tool.

Additional toolboxes can be added Matlab. GUIs can be easily created
in MATLAB. The Matlab scripting language is easy to use and there
are many example of source code available. [Ref. 18]

Table 12. Matlab

55

KJ Guide Control Panel

Fes Options Took Help

Glide Toot»

Gude-Controled Figure Litt

Controlled #1

RafrathLnt

New Object Palette

Add Four«

EEEi

Pre**rtv
£5
Cjlfcack
Edlur

B
Aligrmont

Tiul

:; IsJ
M«mi
EUilur

"3

Apply

•X»« Uxt Hrtbox

j 111 , j

$Hdw

>
checkbox

pu*f*uttor>

.... !
»d« radiobutton fr»m* popupmtnu

Guide interface

GUI created
/

i
EH Frame No. 1
Fie Edit Options Took

My veiy fist GUI

AJ

HHE

Push

Push |

r r
r r

C

Figure 28. Matlab "From Ref. [18]'

56

APPENDIXE. SOURCE CODE

A. ROBOT PSDL-SERVER

Robot PSDL-server: file robot.psdl

TYPE a_data
SPECIFICATION

END
IMPLEMENTATION ADA a_data
END

TYPE pvdata
SPECIFICATION

END
IMPLEMENTATION ADA pvdata

END

TYPE pva_data
SPECIFICATION

END
IMPLEMENTATION ADA pva_data

END

OPERATOR bop_calc
SPECIFICATION

INPUT
bnss_pv_data: pvdata,
bnssstate: pvadata

OUTPUT
bnssadata: adata,
bnss_«Tor: INTEGER,
bnss jsvadata: pva_data,
bnssstate : pva data

MAXIMUM EXECUTION TIME 25 MS
END
IMPLEMENTATION ADA bop_calc

END

OPERATOR bop display
SPECIFICATION

INPUT
bnss_pva_data: pva_dat

MAXIMUM EXECUTION TIME 5 MS
END

IMPLEMENTATION ADA bop_display

57

RobotPSDL-server: filerobot.psdl(cont.)

END

OPERATOR bop_error
SPECDFICATION
INPUT
bnsserror: INTEGER

MAXIMUM EXECUTION TIME 5 MS
END
IMPLEMENTATION ADA bop_error

END

OPERATOR bop_fire_thrusters
SPECIFICATION

INPUT
bnssadata: adata

MAXIMUM EXECUTION TIME 5 MS
END
IMPLEMENTATION ADA bop_fire_thrusters

END

OPERATOR bop_input
SPECIFICATION

OUTPUT
bnss_pv_data : pv_data

MAXIMUM EXECUTION TIME 5 MS
END
IMPLEMENTATION ADA bop_input

END

OPERATOR robot4
SPECIFICATION

END
IMPLEMENTATION

GRAPH
VERTEX bop_calc : 25 MS

VERTEX bop_display : 5 MS

VERTEX bop_crror : 5 MS

VERTEX bop_firc_thmsters : 5 MS

VERTEX bop_input: 5 MS

EDGE bnss_a_data
bopcalc ->
bop_fire_thrusters

58

Robot PSDL-server: file robot.psdl (cont.)

EDGE bnsserror
bopcalc ->
boperror

EDGE bnss_pv_data
bopinput ->
bopcalc

EDGE bnss_pva_data
bopcalc ->
bop_display

EDGE bnssstate
bop_calc ->
bop_calc

DATA STREAM
bnss_a_data: adata,
bnss_error: INTEGER,
bnss_pv_data: pvdata,
bnss_pva_data: pvadata,
bnssstate: pvadata

CONTROL CONSTRAINTS
OPERATOR bop_calc

PERIOD 50 MS

OPERATOR bop_display
TRIGGERED BY ALL
bnss_pva_data

OPERATOR bop_error
TRIGGERED BY ALL
bnsserror

OPERATOR bop_fire_thrusters
TRIGGERED BY ALL
bnssadata

OPERATOR bop_input
PERIOD 200 MS

END

59

Robot PSDL-server: file ada.h

I*

- FILE : ada.h
- CSCI : Robot Controller
-Date :June 1996
- Author :

*/

typedef struct {
int ix;
int iy;
int ir;

} Rec, *Rec_Ptr;

60

Robot PSDL-server: file global.h

I*

- FILE : global.h.a
- CSCI : Robot Controller
-Date :June 1996
— Author :
— Compiler : Sun/Ada

*/

struct data

{
int ix;
intiy;
int ir;
};

61

Robot PSDL-server: file bopdata.a

— FILE : bopadata.a
— CSCI : Robot Controller
-Date :June 1996
— Author
— Compiler : Sun/Ada

with textio;
use text_io;

- definition for a data stream of robot acceleration values

package adataPKG is

type a data is record
xacc : FLOAT := 0.0;
yacc : FLOAT := 0.0;

end record;

end a data PKG;

62

Robot PSDL-server: file bop calc.a

- FILE : bopcalc.a
-- CSCI : Robot Controller
-Date :June 1996
- Author
- Compiler : Sun/Ada

with TEXTJO;
use TEXTJO;
with a_data_Pkg;
with pvadataPkg;
with pvdataPkg;
with math;
use math;

- This is the central operator of the robot "soft landing process".
- On the first call to this operator, initial input is prompted for.
- On subsequent calls, this operator calculates the robot's distance
- from the origin and adjusts acceleration as necessary to bring
- the robot to a soft landing within the required "doughnut". The
- algorithm used is to continually adjust thruster acceleration
- as follows:

- Calculate the robot's distance from origin.

- If the robot is too close to the center,
issue an error message.

- Else if inside the doughnut,
- set acceleration to force robot to stop in 2 periods.
- if the robot is moving very, very slow,
- issue a "DONE" message.

Else, the robot still has a ways to go, so
- calculate thruster acceleration needed to reach origin
- in 2 seconds (the robot may initially speed up, but it
- should eventually experience continued slowdown as it
- gets closer to the doughnut relative to it initial
- distance from the doughnut).

- If the robot is off the table,
- issue an error message.

- Calculate the distance moved since the last call to the this
- operator based on this operator's calling period.

- Calculate the robot's current velocity.

- Write position, acceleration, velocity to outgoing data streams.

~ Save the operator's state.

63

Robot PSDL-server: file bop_calc.a (cont.)

—Spec
package bopcalcPkg is

procedure bop_calc(bnss_state: in out pvadataPkg.pvadata; bnss_pva_data: out
pvadataPkg.pvadata; bnssadata: out a_data_Pkg.a_data; bnsserror: out INTEGER ;bnss_pv_data: in
pv_data_pkg.pv_data);
end bopcalcPkg;

-Body
package body bopcalcPkg is

package FL_IO is new TEXTJO.FLOATJO(FLOAT);

firsttime : INTEGER := 1;

procedure bop_calc(bnss_state: in out pvadataPkg.pvadata; bnss_pva_data: out
pvadataPkg.pvadata; bnssadata: out adataPkg.adata; bnsserror: out INTEGER ;bnss_pv_data: in
pv_data_Pkg.pv_data)

is

dis from center : FLOAT;
xvel desired: FLOAT;
yvel desired: FLOAT;
tmpf: FLOAT;

xpos : FLOAT := 0.0;
ypos : FLOAT := 0.0;
xvel : FLOAT := 0.0;
yvel : FLOAT := 0.0;
xacc : FLOAT := 0.0;
yacc : FLOAT := 0.0;

begin

else — load the previous state to local variables
xpos := bnssstate.xpos;
ypos := bnssstate.ypos;
xvel := bnssstate.xvel;

yvel := bnssstate.yvel;
xacc := bnssstate.xacc;
yacc := bnssstate.yacc;

end if;

if bnss_pv_data.irequest/= Othen
xpos := FLOAT(bnss_pv_data.xpos)/1000.0;
ypos := FLOAT(bnss_pv_data.ypos)/1000.0;

end if;
bnsserror :=0;

64

Robot PSDL-server: file bop calc.a

— Calculate Distance from Center
disfromcenter := Sqrt(xpos * xpos + ypos *ypos);

ifdis_from_center< 0.01 then — In to close to center
PUT_LINE("Too Close");
bnsserror := 1;

elsif disfromcenter < 0.02 then — Inside circle
xacc := -xvel * 20.0; - Stop in 2 periods

yacc := -yvel * 20.0;

if abs(yvel) < 0.00001 then
if abs(xvel) < 0.00001 then

PUT("DONE");
end if;
end if;

else
— Adjust acceleration

xveldesired := - (xpos / 2.0); ~ Reach center in 2s
yvel_desired := - (ypos / 2.0);
xacc := - (xvel - xvel_desired);
yacc := - (yvel - yveldesired);
end if;

if abs(xpos) > 1.0 then - Off the table
PUT_LINE("OFF THE TABLE X");

bnsserror := 2;
end if;
if abs(ypos) > 1.0 then

PUT_LINE("OFF THE TABLE Y");
bnss_error:=3;

end if;

- Calculate Distance Moved
xpos := xpos + (xvel • 0.05) + (xacc * 0.00125);
ypos :- ypos + (yvel • 0.05) + (yacc * 0.00125);

- Calculate New Velocity

xvel:- xvel + (xacc • 0.05);
yvel := yvel + (yacc * 0.05);

- write to output data streams
bnss_pva_data.xpos := xpos;
brtss_pva_data.ypos :«= ypos;
bnss_pva_data.xvel := xvel;
bnss_pva_data.yvel := yvel;
bnssjjvadata.xacc := xacc;
bnss_pva_data.yacc := yacc;
bnss_a_data.xacc := xacc;
bnssadata.yacc := yacc;

65

Robot PSDL-server: file bop calc.a (cont.)

— save this operators state
bnssstate.xpos := xpos;
bnssstate.ypos := ypos;
bnssstate.xvel := xvel;
bnssstate.yvel := yvel;
bnssstate.xacc := xacc;
bnssstate.yacc := yacc;

end bopcalc;
end bopcalcPkg;

66

Robot PSDL-server: file bop display.a

— FILE : bopdisplay.a
— CSCI : Robot Controller
-Date :June 1996
— Author :
-- Compiler : Sun/Ada

with TEXTJO;
use TEXTJO;
with pvadataPkg;
with socket_Pkg;
use socketPkg;

package bopdisplayPkg is
procedure bop_display(bnss_pva_data: in pvadataPkg.pvadata);

end bopdisplayPkg;

package body bop_display_Pkg is

package FL_IO is new TEXTJO.FLOATJO(FLOAT);

procedure bop_display(bnss_pva_data: in pva_data_Pkg.pva_data) is

ix: INTEGER;
fx: FLOAT;
fy: FLOAT;

begin

ix:=0;
fx := bnssjjvadata.xpos;
fy :- bnss_pva_data.ypos;
socket(fx,fy,ix);

end bopdisplay;
end bopdisplayPkg;

67

Robot PSDL-server: file bop error.a

— FILE : boperror.a
— CSCI : Robot Controller
-Date :June 1996
— Author
— Compiler : Sun/Ada

with TEXTJO;
use TEXTJO;

— All that this operator does is read an error flag
— setting from its input data stream and writes
— and error indication to the display if the error
— flag is set to indicate error.

—Spec
package bop_error_Pkg is

procedure bop_error(bnss_error: in INTEGER);
end bop_crror_Pkg;

-Body
package body boperrorPkg is

package INT JO is new TEXTJO.INTEGERJO(rNTEGER);

procedure bop_erTor(bnss_error: in INTEGER) is

begin
if bnsserror > 0 then
INT_IO.PUT(bnss_error);
PUT_LINE("Error");
end if;

end bopciTor,
end bop errorPkg;

68

Robot PSDL-server: file bopjirethrusters.a

— FILE : bop_fire_thrusters.a
-- CSCI : Robot Controller
-Date :June 1996
— Author
— Compiler : Sun/Ada

with TEXTJO;
use TEXTJO;
with adataPkg;

— This is sort of a dummy operator that inputs thruster acceleration
— adjustments and outputs the received adjustment to the system
— display. Its intended purpose was to effect a more realistic
— model by having an operator that actually receives the thruster
— adjustments from the operator that does the thruster adjustment
— calculations.

package bopJirethrustersPkg is
procedure bop_fire_thrusters(bnss_a_data: in adataPkg.adata);

end bop_fire_thrusters_Pkg;

package body bopfirethrustersPkg is

package FLJO is new TEXTJO.FLOATJO(FLOAT);

procedure bop_fire_thrusters(bnss_a_data: in adataPkg.adata) is

ftmp : FLOAT := 0.0;

begin

if bnss_a_data.xacc > 0.0 then
Put(" Left Thruster =");
FL_IO.PUT(bnss_a_data.xacc,0,3,0);
Putf Right Thruster =");
FL_IO.PUT(ftmp,0,3,0);

else
Put(" Left Thruster =");
FL_IO.PUT(ftmp,0,3,0);
Put(" Right Thruster =");
FL_IO.PUT(abs(bnss_a_data.xacc),0,3,0);

end if;

69

Robot PSDL-server: file bopjirethrusters.a (cont.)

if bnssadata.yacc > 0.0 then
Put(" Bott Thruster =");
FL_IO.PUT(bnss_a_data.yacc,0,3,0);

Put(" Top Thruster =");
FL_IO.PUT(ftmp,0,3,0);

else
Put(" Bott Thruster =");
FL_IO.PUT(ftmp,0,3,0);
Put("Top Thruster =");
FLJO.PUT(abs(bnss_a_data.yacc),0,3,0);

end if;
NEW_LINE;

end bopfirethrusters;
end bopfirethrustersPkg;

70

Robot PSDL-server: file bop Jire inputs.a

— FILE : bopinput.a
— CSCI : Robot Controller
-Date :June 1996
— Author :
— Compiler : Sun/Ada

with TEXTJO;
use TEXTJO;
with socketPkg;
use socketPkg;
with pvdataPkg;

package body bopinputPkg is

procedure bop_input(bnss_pv_data: out pv_data_Pkg.pv_data) is

ir: INTEGER;
fx: FLOAT;
fy: FLOAT;

begin

ir:=l;
fx := 0.0;
fy := 0.0;
socket(fx,fy,ir); - Check the GUI for input

bnss_pv_data.xpos := fx;
bnss_pv_data.ypos := fy;
bnss_pv_data.irequest := ir;

end bop_ input;
end bopinputPkg;

71

Robot PSDL-server: file bopjjvdata.a

— FILE : bop_pv_data.a
— CSCI : Robot Controller
--Date :June 1997
— Author :
— Compiler : Sun/Ada

with textio;
use text_io;

— definition for a data stream of robot position,
— velocity, and acceleration values

package pvdataPKG is

type pvdata is record
irequest: INTEGER := 0;
xpos : FLOAT := 0.0:
ypos : FLOAT := 0.0:
xvel: FLOAT := 0.0
yvel: FLOAT := 0.0

end record;

end pv_data_PKG;

72

Robot PSDL-server: file bop_pvajlata.a

- FILE : bop_pva_data.a
- CSCI : Robot Controller
-Date :June 1996
- Author :
- Compiler : Sun/Ada

with text_io;
use textio;

— definition for a data stream of robot position,
— velocity, and acceleration values

package pvadataPKG is

type pva_data is record
xpos : FLOAT := 0.0
ypos : FLOAT := 0.0
xvel: FLOAT := 0.0
yvel: FLOAT := 0.0,
xacc : FLOAT := 0.0
yacc : FLOAT := 0.0

end record;

end pva_data_PKG;

73

Robot PSDL-server: file socket.a

- FILE :socketa
- CSCI : Robot Controller
-Date :June 1996
- Author
- Compiler : Sun/Ada

-Purpose : The package contains the procedure socket
-which is used to pass data to GUI-client.
-Socket binds to the C program that does the
-actual socket connection.

with textio;
use textio;

-Spec
package sockct_PKG is

procedure socket(xx: in out Float; yy: in out Float;
ireq: in out INTEGER);

end socket PKG;

-pkg
package body socketPKG is

— to instantiate integer generic

al : FLOAT;
bl : FLOAT;

type Rec is record
ix: Integer;
ly: Integer;
ir: Integer;

end record;

type RecPtr is access Rec;

I: Rec_Ptr := new Rec;

pragma LINK_WITH ("server.o");
procedure server(I: in RecPtr);
pragma Interface (C, server);

procedure Socketxx: in out Float; yy: in out Float;
ireq: in out INTEGER) is

74

RobotPSDL-server: filesocket.a (cont.)

begin

al := xx * 1000.0;
I.ix:=INTEGER(al);
bl :=yy* 1000.0;
I.iy:=INTEGER(bl);
I.ir := INTEGER(ireq);
server(I);
xx := FLOAT(I.ix);
yy := FLOAT(I.iy);
ireq := I.ir;

end Socket;

end socket PKG;

75

Robot PSDL-server: file server, c

-FILE : server.c
-CSCI : Robot Controller
-Date :June 1997
- Compiler :gcc

— This program implements the C socket connection.
*/

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/filio.h>
#include "confer.h"
#include "global.h"
#include "parse.h"
#include "ada.h"

#defme MAX 128
fldefine MAXFILTERS 100
#define MAXRECORDS 100

extern int errno;

void closeconnectionO;

struct sockaddrin MySockaddr;
int isock;
struct data recmessage;
struct data sendmessage;

76

Robot PSDL-server: ßle server, c (cont.)

/*************************************„,*.„,«.,.„.
Function server
Arguments: RecPtr Info;
Return: None
Purpose: Sends data to the client.

The struct defined in message being the structure
data defined in global.h. Will return 1 if able send.

***/

server(Info)
RecPtr Info;

{
int ret;

sendmessage.ix = Info->ix;
sendmessage.iy = Info->iy;
sendmessage.ir = Info->ir;

ret = inet_server();
if(ret < 0)

printf("failed to read message socket may have died\n");

Info->ix = recmessage.ix;
Info->iy = recmessage.iy;
Infc->ir = recmessage.ir;

}

/*•*••*•••»*************************„ „„,,„ „,„,*
Function inet_server
Arguments: None
Return: integer

-1 if fails to read or socket died
Purpose: Sets up server. Will return 1 if able

to read. Will return -1 if fails or socket has
died.

••••••••••••••••••••••••••a****************/

inet serverO
{
int result:

signal(SIGPIPE, closeconnection);

77

Robot PSDT.-server: fife server.c (cant.)

if(isock< 1)

{
set_up();

}
if(isock < 1)

{
return(-l);

}
result = msgs();

/* Determine whether we've exited because of an error or the
* connection has been disconnected.
*/
if (result <0)

{
perror("read failed");

isock = 0;
return(-l);

}
if(result < 1) /* socket died*/

{
isock = 0;
return(-l);

}
return(l);

Function: setup
Arguments: none
Return: int (-1 if fails)
Purpose: Continues the socket setup. Listens for a connection.
»«»»••••»*•*******•**»»*****»**********»************/

int setupO
<

static struct sockaddrin from;
static int length = sizeoftfrom);
static int firsttime = 1;

if(firsttime)

{
I* Set-up the connection */
iflinit_isock_conn() < 0)

{
return(-l);

};
/• Get ready to accept from •/
iniistcn(LISTENER,l)<0){

perrorf, "listen");
retum(-l);

>
firsttime = 0;

78

Robot PSDL-server: file server, c (cont.)

/* Accept new data connection */
if((isock = accept(LISTENER, &from, &length)) < 0)

Error_Abort("accept");

fprintf(stderr, "connected\n");
}

Function: msgs
Arguments: none
Return: int
Purpose: Performs the reading and writing on the socket,
«•••a******»**/

msgs()
{

static int ii = 0;
int rest;
struct sockaddrin from;
int fromlen = sizeof(struct sockaddrin);
int remnant = 0, cc;
int itmp,ret,bytes;
static int count = 1;
char test[100];
int icount = 0;
ret=0,

write(isock, &sendmessage, sizeof(sendmessage));
iflisock > 0)
cc - read(isock, test,l); /* read check byte */

ifltest[0] — 1)
{
iflisock>0)
cc - read(isock, &recmessage,sizeof(recmessage)); /* read data structure */

}
else
{

recmessage.ix = 0;
recmessage.iy = 0;
recmessage.ir = 0;
rcturn(1);

}
rest = 12-cc;
iflrest != 0)
{
cc = recvfrom(isock, test,rest,0,&from,&from_len);
rest = rest - cc;

>
retum(1);

79

Robot PSDL-server: file server.c (cont.)

Function: closeconnection
Arguments: none
Return: void
Purpose: Close the socket when a SIGPIPE accurs.

void close_connection()

{ .
shutdown(isock, 2);
fprintf(stderr, "SIGPIPE received...exiting\n");
close(isock);
isock = 0;

}
/*
* Set-up a TCP connection
*/

int init_isock_conn()

{
int sock;

struct sockaddr_in server;
struct hostent *hp;
struct servent *sp;

bzero((char *)&server, sizeofi[server));

itftsock = socket(AF INET, SOCK_STREAM, 0)) < 0)

{
ErTor_Abort(HsocketM);
return(-l);

}
if(setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char *)0,0) < 0)

Error_Abort("setsockopt, 1");

iflsetsockopt(sock, SOL_SOCKET, SO_DONTLINGER, (char *)0,0) < 0)
EiTor_Abort("setsockopt,2");

/•
ift(sp * gctservbyname(service, "tcp")) = NULL) {

fprintfl;stderT, "isock: tcp/isock service not available\n");
exit(-l);

}
server.sin jpoft ■= sp->s_port;

•/
server.sin_port = 4141; /* Hard code port number, should use services file */

server.sinfamily = AFINET;
server.sin addr.s addr = INADDR ANY;

80

Robot PSDL-server: file server, c (cont.)

if(bind(sock, &server, sizeof(server)) < 0)
{

perror("bind");
close(sock);
return(-l);

}
if (sock != LISTENER) {

if (dup2(sock, LISTENER) = -1)
fprintf(stderr, "\nINIT_CONN: dup2 failed\n");

}
retura(l);

}

81

B. ROBOT JAVA GUI-CLIENT

Robot JAVA GUI-client: file lander.html

JAVA - Applet GUI-Client

<html>
<head>
<title>CAPS Robot Lander Craft - Client/Server JAVA JDK
</title>

</head>
<body background="ste.jpg" bgcolor="#FFFFFF">
<h2>
NRAD/NPS MS Software Engineering -
</h2>
<p>
CAPS- Client/Server JAVA - Robot Lander
<p>
<APPLET CODE="Lander" WJDTH=400 HEIGHT=500>
</APPLET>
</HTML>
</body>

82

Robot JA VA GUI-client: file lander.Java

/sit***

* File: lander.java

* Lander is an applet GUI-client for the robot. Communications with
* the PSDL-server is via socket communications. The x,y locations are
* passed from the server.
*

*Date: 8/97
*

import java.awt.*;
import java.applet.*;
import java.util.*;
importjava.net.*;
import java.lang.*;
import java.io.*;

public class Lander extends Applet implements Runnable
{

MediaTracker theMediaTracker;
Image imageDuke,imageBack;
Image imageBuffer;
Image buffer;
Graphics imageBufferG, bufferG;
Thread tl;
//RandClientrl;
int xx,yy;
tnt newx,newy;
double dcompress = 1.0;
boolean bNeedToRestart = false;
boolean bRunning = false;

TcxtField xFielcLyField;
TcxtField xvField,yvField;
TcxtField xaFielcLyaField;
Button startButton;
Button bZoomln.bZoomOut;

public void start()
{

System.out.println("start ");
xx = 0;
yy = 0;

7

83

Robot JA VA GUI-client: file lander.Java (cont.)

public boolean action(Event evt,Object arg)

{
boolean retVal = false;

if(evt.target = bZoomln)

{
dcompress = dcompress* 1.2;
buildback();
repaint();
retVal = true;

}
if(evt.target = bZoomOut)

{
dcompress = dcompress/1.2;
buildback();
repaint();
retVal = true;

}
if((evt. target = startButton)

||(evt. target = xField)
||(evt.target = yField))

{

!yvalue.cquals(""))

String xvalue,yvalue;
double x,y;

if][bRunning = false)

{
bRunning = true;
tl = new Thread(this);

tl.start();
repaint();

}

x value = xField.getText();
yvalue = yField.getText();

ifftxvalue != null) && (yvalue != null) && !xvalue.equals("") &&

(
//cvalue = Double.toString(c);
//cField.setText(cvalue);
newx = Integer.parselnt(xvalue);
ncwy = Integer.parselnt(yvalue);
bNeedToRestart = true;
xx = newx;
yy = newy;

84

Robot JAVA GUI-client: file lander.Java (cont.)

repaint();
}
retVal = true;

}
return retVal;

}

public void update(Graphics g)
{

paint(g);
}

public void paint(Graphics g)
{

Rectangle bounds;
int w,h;
double dscreenx, dscreeny;
Color c;
int i,max;

bounds = this.bounds();

dscreenx = (double)xx*dcompress/10 + 200;
dscreeny = (double)yy*dcompress/10 + 200;

buffcrG.drawImage(imageBuffer, 0, 0, this);
w = imageDuke.getWidth(this);
h = imageDuke.getHeight(this);
bufTcrG.drawInTage(ÜTmgeDukeXint)dscreenx-w/2,(int)dscreeny-h/2,w,h,this);
g.drawlmage(buffer, 0, 0, this);

public boolean mouseDrag(Event event, int screenx, int screeny)
{

newx = (int)(((double)((10 * screenx)-2000))/dcompress);
newy = (int)(((double)((10* screeny) -2000))/dcomprcss);
xx = newx;
yy - newy;
bNcedToRestart = true;
repaint();
return true;

}

public void stop()
(

System.out.println("stop ");
bRunning = false;

}

85

Robot JAVA GUI-client: file lander.java (cont.)

public void init()
{

Rectangle bounds;
Panel toolbar,toolbar2;

bounds = this.bounds();
System.out.println("init");

this.setLayout(newGridLayout(14,l));
toolbar = new Panel();
toolbar2 = new Panel();
xField = new TextField("1000",6);
yField = new TextField("1000",6);
xvField = new TextField(6);
yvField = new TextField(6);
xaField = new TextField(6);
yaField = new TextField(6);

startButton = new Button("Restart");
toolbar.add(startButton);
bZoomln = new Button("Zoom In");
toolbar.add(bZoomln);
bZoomOut = new Button("Zoom Out");
toolbar.add(bZoomOut);

toolbar.add(newLabel("XY",Label.RIGHT));
toolbar.add(xField);
toolbar.add(yField);

this.add(toolbar);
toolbar2.add(xvField);
toolbar2.add(yvField);
toolbar2.add(newLabel("XYacc",Label.RIGHT));

tooIbar2.add(xaField);
toolbar2.add(yaField);
this.add(tooIbar2);

/rdukes.gir);
/rPhoto_7.gir);
imagcDukc = gctlmage(getDocumentBase(), "dukes.giF);
// ent.gif
//imageBack = getlmage(getDocumentBase(), "sat.gif");

toolbar2.add(newLabel("XYvel",Ubel.RIGHT));
imageBuffcr = createlmage(size().width, size().height);

86

Robot JAVA GUI-client: file lander.Java (cont.)

imageBufferG = imageBuffer.getGraphics();

buffer = createlmage(size().width, size().height);
bufferG = buffer.getGraphics();

theMediaTracker = new MediaTracker(this);
//theMediaTracker.addImage(imageBack,0);
theMediaTracker.addImage(imageDuke,l);
try

{
theMediaTracker.waitForAll(2000);

}
catch(InterruptedException ex) {}

buildback();
}

public void buildback()
{

double dx,dtmp,dtmp2;
Rectangle bounds;
int w,h,ii;

bounds = this.bounds();
//System.out.println("build "+bounds.width);

//imageBufferG.clearRect(0,0,bounds.width,bounds.height);
imageBufferG.setColor(Color.black);
imageBufferG.fillRect(0,0,bounds.width,bounds.height);

//w = imageBack.getWidth(this);
//h = imageBack.getHeight(this);
//imageBufferG.drawImage(imageBack,200-(int)((double)w*dcompress)/(2*4),200r

(int)((double)h*dcompress)/(2*4),(int)((double)w*dcompress/4.0),(int)((double)h*dcompress/4.0),this);

dtmp= dcompress* 100.0;
dtmp2 = dcompress * 200.0;
imageBufferG.setColor(Color.yellow);
imageBuffeiG.draw(>al(200Kmt)dtmp,200-(int)dtmp,(int)dtmp2,(int)dtmp2);
dtmp = dcompress * 2.0;
dtmp2 = dcompress * 4.0;
imageBufferG.setColor(Color.blue);
miageBufTerG.drawOval(200-(mt)dtmp,200-(int)dtmp,(int)dtmp2,(int)dtmp2);
dtmp = dcompress * 1.0;
dtmp2 = dcompress * 2.0;
imageBufferG.setColor(Color.cyan);
irnageBufferG.d^wOval(200-(mt)dtmp,200-(mt)dtmp,(int)dtmp2,(int)dtmp2);

87

Robot JAVA GUI-client: file lander.Java (cont.)

imageBufferG.setColor(Color.gray);
imageBufferG.drawLine(200,0,200,400);
imageBufferG.drawLine(0,200,400,200);

dx = 0.0;
ii = 0;
while(dx < 200.0)

{
dx = (double)ii * dcompress;
imageBufferG.drawLine(200 + (int)dx, 196,200 + (int)dx,204);
imageBufferG.drawLine(200 - (int)dx, 196,200 - (int)dx,204);
imageBufferG.drawLine(196,200 + (int)dx,204,200 + (int)dx);
imageBufferG.drawLine(196,200 - (int)dx,204,200 - (int)dx);
if(dcompress < 2.0)
ii = ii+10;

else
ii = ii+ 1;

}
}
public void destroy()
{

System.out.println("destroy ");
}
public void run()

{
Socket server;
InputStream in;
OutputStream out;
DatalnputStream datain;
DataOutputStream dataOut;
int ii = 1;
int iin;

try
{
tl.sleep(1000);

>
catch(InterruptedException ex) { }

while(bRunning)
{

try
<

//server = new Socket(InetAddress.getLocalHost(),4141);
server = new Socket("pegasi.nosc.mil",4141);
in = server.getInputStream();
out = server.getOutputStream();

88

Robot JAVA GTir-rlipnt: fileAander.ia.va (r.ont)

datain = new DatalnputStream(in);
dataOut = new DataOutputStream(out);

while(bRunning)
{

iin = dataln.readlnt();
//System.out.println("The current number is: "+iin);
xx = iin;
iin = dataln.readlnt();
//System.out.println("The current number is: "+iin);
yy = iin;
iin = dataln.readlntO;
//System.out.println("The current number is: "+iin);
if(iin = 1)

{
if(bNeedToRestart)

{
dataOut.writeByte(1);
dataOut.writeInt(newx);
dataOut.writelnt(newy);
dataOut.writelnt(l);
//System.out.println("The x: "+newx);
//System.out.println("The y: "+newy);
bNeedToRestart = false;
}
else
{
dataOut.writeByte(65);
}

}
else
{
dataOut.writeByte(65);
repaintO;

}
ii = ii+ 1;
>

System.out.println("Closing socket");
dataIn.close();
in.cIose();
dataOut.closeO;
out.close();

>
catch(IOExcq)tion ex)
{

11 System.out.println("Error connecting to random server");
>

89

Robot JAVA GUI-client: file lander.iava (cont.)

public boolean imageUpdate(Image img, int flags, int x, int y, int w, int h)

{
if(img != imageDuke)

{
buildback();
repaint();
return true;

}
repaint();
return true;

90

C. ROBOT VISUAL WORKSHOP (MOTIF) GUI-CLIENT

Robot Visual Workshop (Motif) GUI-client: file: Makfile

SHELL=/bin/sh
UILFLAGS=-I/usr/include/uil
MRMLIBS=-lMrm

Solaris 2.x
XINCLUDES=-I/usr/dt/include -I/usr/openwin/include -I/usr/openwin/include/Xl 1
XLIBS=-L/usr/dt/lib -L/usr/openwin/lib -R/usr/dt/lib -R/usr/openwin/lib
LDLIBS=-lgen -lthread -lsocket -lnsl -lm
CCC=CC
MRMLIBS=-L/usr/dt/lib -lMrm
UILFLAGS=-I/usr/mclude/uil-I/usr/dt/include/uil
VISUROOT=/opt/SUNWspro/WS4.0

XPMLIBDIR = ${VISUROOT}/user_widgets/obj
XPMDIR = ${VISUROOT}/contrib/xpm/lib
LDFLAGS = ${XLIBS} -L${XPMLIBDIR}
MOTIFLIBS = -lXpm -lXm -lXt -1X11

XPCLASS = S(VISUROOT)/src/xdclass
XPCLASSLIBS = $(XPCLASS)/lib/libxdclass.a

CFLAGS=-I. ${XINCLUDES} -I${XPMDIR}
CCFLAGS=${CFLAGS} -I${XPCLASS}/h

UIL=uil

#DO NOT EDIT >»
XD_C_PROGRAMS=\

bp

#«< DO NOT EDIT

#DO NOT EDIT >»
XD_C_PROGRAM_OBJECTS=\

bp.o
#<« DO NOT EDIT

#DO NOT EDIT >»
XD_C_PROGRAM_SOURCES=\

bp.c

#<« DO NOT EDrr

#DO NOT EDIT >»
XD_C_STUB_OBJECTS=\

bp_stubs.o

91

Robot Visual Workshop (Motif) GUI-client: file: Makefile (cont.)

#<« DO NOT EDIT

#DO NOT EDIT >»
XD_C_STUB_SOURCES=\

bp_stubs.c

#<« DO NOT EDIT

XD_ALL_C_SOURCES=$(XD_C_PROGRAM_SOURCES)$(XD_C_SOURCES)
$(XD_C_STUB_SOURCES)$(XD_C_FOR_UIL_PROGRAM_SOURCES)
$(XD_C_FOR_UIL_SOURCES)

XD_ALL_CC_SOURCES=$(XD_CC_PROGRAM_SOURCES)$(XD_CC_SOURCES)
$(XD_CC_STUB_SOURCES)

all: CHECKENV CHECKROOT $(XD_C_PROGRAMS) $(XD_CC_PROGRAMS)
$(XD_C_FOR_UIL_PROGRAMS)$(XD_UIL_OBJECTS)

depend:
makedepend - $(CFLAGS) $(CPPFLAGS) - $(XD_ALL_C_SOURCES)
makedepend -a - S(CCFLAGS) $(CPPFLAGS) - $(XD_ALL_CC_SOURCES)

clean:
rm -f $(XD_C_PROGRAMS) $(XD_C_PROGRAM_OBJECTS) $(XD_C_OBJECTS) \

$(XD_CC_PROGRAMS) $(XD_CC_PROGRAM_OBJECTS) $(XD_CC_OBJECTS) \
$(XD_C_STUB_OBJECTS) \
$(XD_CC_STUB_OBJECTS) \
$(XD_C_FOR_UIL_PROGRAMS)$(XD_C_FOR_UIL_PROGRAM_OBJECTS)

$(XD_C_FOR_UIL_OBJECTS) \
$(XD_UIL_OBJECTS)

CHECKENV:
©test -n "$(VISUROOT)" || (echo You must set \$$VISUROOT in the makefile or in your shell

environment; exit 1)

CHECKROOT:
©test -d "S(XPCLASS)" || (echo \S$VISUROOT must point to a valid root directory; exit 1)
©test -d "SfVISURCKJrymakejemplates" || (echo \$$VISUROOT must point to a valid root

directory; exit 1)

#DO NOT EDIT >»
bp: cliento thl.o lander.obp.o$(XD_C_OBJECTS) $(XD_C_STUB_OBJECTS)

S(CC) -g $(CFLAGS) S(CPPFLAGS) S(LDFLAGS) -o bp client.o thl.o lander.o bp.o
S(XD_C_OBJECTS) $(XD_C_STUB_OBJECTS) S(MOTIFLIBS) $(LDLIBS)
#<« DO NOT EDIT

#DO NOT EDIT >»
bp.o: bp.c

$(CC) -g $(CFLAGS) $(CPPFLAGS) -c bp.c

92

Robot Visual Workshop (Motif) GUI-client: file: Makefile (cont.)

#<« DO NOT EDIT

#DO NOT EDIT >»
bpstubs.o: bpstubs.c

$(CC) -g $(CFLAGS) $(CPPFLAGS) -c bp_stubs.c
#<« DO NOT EDIT

93

Robot Visual Workshop (Motif) GUI-client: file: bp_stubs.c

I*
** Generated by Workshop Visual
*/

/*
** Workshop Visual-generated prelude.
** Do not edit lines before "End of Workshop Visual generated prelude"
** Lines beginning ** Workshop Visual Stub indicate a stub
** which will not be output on re-generation
*/

/*
**LIBS:-lXm-lXt-lXll
*/

#include <X1 l/Xatom.h>
#include <X11/Intrinsic.h>
#include<Xll/Shell.h>

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include <Xm/PushB.h>

#include "bp.h"

extern void XDmanage_link (Widget w, XtPointer clientdata, XtPointer calldata);
extern void XDunmanagelink (Widget w, XtPointer clientdata, XtPointer calldata);
extern void XDpopup link (Widget w, XtPointer clientdata, XtPointer calldata);
extern void XDpopdownlink (Widget w, XtPointer clientdata, XtPointer calldata);
extern void XDmap_link (Widget w, XtPointer clientdata, XtPointer calldata);
extern void XDunmap_link (Widget w, XtPointer clientdata, XtPointer calldata);
extern void XDenablelink (Widget w, XtPointer clientdata, XtPointer calldata);
extern void XDdisablelink (Widget w, XtPointer clientdata, XtPointer calldata);

I* End of Workshop Visual generated prelude */

/•
•* Workshop Visual Stub mybrucecallback
•/

void mybrucecallback(Widgct w, XtPointer clientdata, XtPointer xtcalldata)
{

static int firsttime = 1;

XmPushButtonCallbackStruct »calldata = (XmPushButtonCallbackStruct *) xt_call_data :

94

Robot Visual Workshop (Motif) GUI-client: file: bpstubs.c (cont.)

printf("Bl\n");

if(firsttime)
{
oldmain();
firsttime = 0;

}
send_data(1000,1000);

}

/*
** Workshop Visual Stub bruce_drawing_callback_resize
*/

void brace_drawing_callback_resize(Widget w, XtPointer clientdata, XtPointer xt_call_data)
{

GCgc;
static int firsttime = 1;

XmDrawingAreaCallbackStruct *call_data = (XmDrawingAreaCallbackStruct *) xt_call_data ;
printiTB2\n");

if(! firsttime)
{
setup_image(w);
drawback();

}
firsttime = 0;

}

/*
** Workshop Visual Stub bruce_drawing_callback_input
•/

void bruce drawing_callback_input(Widget w, XtPointer client_data, XtPointer xt_call_data)
{

GCgc;

XmDrawingAreaCallbackStruct *call_data = (XmDrawingAreaCallbackStruct *) xt_call_data ;
pnnt(l["B3\n");

95

Robot Visual Workshop (Motif) GUI-client: file: bp.res

! Generated by Workshop Visual

! bpshell

! messageBoxl

! brucebutton
XApplication*bruce_button.labelString: Restart

! brucedrawing
XApplication*bruce_drawing.foreground: SlateGrey
XApplication*bruce_drawing.backgroimd: GhostWhite
XApplication*bruce_drawing.marginWidth:400
XApplication*bruce_drawing.marginHeight: 400

! cascade1
XApplication*cascadel .labelString: File

! button 1
XApplication*buttonl.labelString: Open

! button4
XApplication*button4.1abelString: Exit

! cascade2
XApplication*cascade2.1abelString: Edit

96

Robot Visual Workshop (Motif) GUI-client: file: bp.xd

module 'XApplication'
version = 43;
applicationName = 'XApplication';
generateNameC = * 'bp.c';
generateNameCMainProgram = * 'bp.c';
generateNameStubs = * 'bpstubs.c';
generateNameExterns = * 'bp.h';
generateNameResDB = * "bp.res';
gcnerateNameCPixmaps = * "bp_pixmaps.h';
generateCHeaderFile = 'bp.h';
generateNameMakefile = 'Makefile';
generateMask = 12;
useMask = 1;
ansiC = 1;
gcncrateNewMakefile = 1;
generateMakeTemplate = 0;
useCPixmaps = 0;
uscUILPixmaps = 0;
useCHeaders = 1;
uscCUILHeaders = 0;
CPPFlavour = 0;
useCPPHeaders = 0;
useCPPHeadersMFCWindows = 0;
uscCPPHcadcrsMFCMotif = 0;
object 'bpsheir : XmDialogShell {

arguments {
lastGcnName = *bp_sheH';
createPreludeStatus = 2;
prelnstantiation = 'void create_bp_shell (Display ""display, char *app_name, int app_argc, char

••app_argv)
l. »

XmNallowShellResize = true;
XmNprimary = 1;
>;

object T : XmMessageTemplate {
arguments {
UstGenName - 'messageBoxl';
XmNautoUnmanage = false;
XmNdialogType = 0;
>;

object T : XmSeparator GADGET {
arguments {
name ■= 'Separator';
UstGenName - 'separator 1';
};

I;
object ,bruce_button': XmPushButton {

arguments {
lastGcnName = Tjruce button';

97

Robot Visual Workshop (Motif) GUI-client: file: bp.xd (cont.)

XmNlabelString = 'Restart';

};
callbacks {
XmNactivateCallback ='

mybrucecallback()
t.

};
};
object '2': XmPushButton {

arguments {
lastGenName = button2';

};
};
object '3': XmPushButton {

arguments {
lastGenName = 'button3';

};
};
object *bruce_drawing': XmDrawingArea {

arguments {
was_selected = true;
lastGenName = brucedrawing';
generateResName = true;
XmNforeground = * color{'SlateGrey');
XmNbackground = * color('GhostWhite');
XmNmarginWidth = * 400;
XmNmarginHeight = * 400;

};
callbacks {
XmNinputCallback ='

bruce_drawing_callback_input()

XmNresizeCallback ='
bruce_drawing_callback_resize()
l,

>
};

J;
object T : XmMenuBar {

arguments {
lastGenName = 'menuBarl';
};

object T : XmCascadeButton {
arguments {
lastGenName = 'cascade 1';
XmNlabelString = 'File';

};
object T : XmPulldownMenu {

arguments {
lastGenName = 'menul';
};

98

Robot Visual Workshop (Motifi GUI-client: file: bp.xd. (cont.)

object '1': XmPushButton {
arguments {
lastGenName = 'buttonl';
XmNlabelString = 'Open';
};

};
object '4': XmPushButton {

arguments {
lastGenName = 'button4';
XmNlabelString = 'Exit';
};

};
};
};
object '2': XmCascadeButton {

arguments {
lastGenName = 'cascade2';
XmNlabelString = 'Edit';
};

object '2': XmPulldownMenu {
arguments {
lastGenName = 'menu2';
};

end module;

99

Robot Visual Workshop (Motif) GUI-client: file: diente

/**

* File: client.c

Clientx is used to start the socket connection for the GUI-client. It
communicates with the server. If communication is disrupted,
it is re-started. Data is sent and received. Communication is hard coded to
a predefined port number. The server name is also hard-wired.
This is just a prototype implementation. A better method for
doing for synchronizing the passing of data should be established.

*
* C/C++ version

* Date: 8/97
*

* Compiler: gec or Sun Compiler
** */

#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
^include <errno.h>
^include <signal.h>
#include "global.h"

int inet();
void catchkill();
int intclient;
extern int ermo;

FILE »fsock;
int gix,giy;
int gbNcedToStart« 0;

struct data sendmessage;
struct data recmessage;

Function: senddata
Arguments: int x, new x location for robot

int y, new y location for robot
Return: none
Purpose: Used to request new x,y locations for robot.
»•»»»»»»»»»»»»»»»»»»»»»»»»»»»a**»**********/

void send_data(int x, int y)

100

Robot Visual Workshop (Motif) GUI-client: file: client.c (cont.)

{
gbNeedToStart=l;
gix = x;

giy = y;
}

Function clientmain
Arguments: int *x, int *y;
Return: none
Purpose: Make connection to server, and it will return

ix and iy if data is sent from the server,
it:**/

void client_main(int *ix, int *iy)

{
int ii;
int ret;

ret = sock_data("pegasi.nosc.mil");
if(ret < 0)

printf("could not write to socket\n");

}

*ix = (float)recmessage.ix;
*iy = (float)recmessage.iy;

Function sockdata
Arguments: char traffichost (name of host to connect to)
Return: int (-1 if fails)
Purpose: Starts the socket connection, functions

called:(open, inetclient, inet)

sock_data(traffic_host 1)
void char *traffic_hostl;
{

static int ret 1 =0;
static int sockl; I* inet socket file descriptor •/
static char unix_read[READ_SIZE]; /* array used to read message */
static char old_parsel[READ_SIZE]; /* array to hold partial message •/

sgnal(SIGPIPE,catchkill);

while(retl = 0)
{

sockl =inet_client(traffic_hostl);
fsock = fdopen(sockl,"w");
if(sockl)

retl = 1;
}

101

Robot Visual Workshop (Motif) GUI-client: file: diente (cont.)

if(retl)
retl = inet(sockl); /* inet socket */

if(retl = 0)
return(-l);

eise
return(l);

/«ft**

Function inetclient
Arguments: char traffichost (name of server to connect to
Return: int
Purpose: Continues setup of socket.
ft*«**/

inet_client(traffic_host)
char *traffic host;

{
struct sockaddrin myserver, from;
int length = sizeof(from);
struct hostent *hp;
struct servent *sp;
int pid;
int ret;
int sock;

signal(SIGPIPE,catchkill);

if((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("could not make socket\n");
exit(-l);

}

ifl(hp = gethostbyname(traffichost)) = NULL) {
perror(traffic_host);
exit(-l);

}
myserver.sin_port = 4141; /* Hard coded, should open services files */
bcopy(hp->h_addr, &myserver.sin_addr.s_addr, hp->h_length);
myserver.sinfamily = AFINET;

if((ret = connect sock, &myserver, sizeofllmyserver))) >= 0) {
printft "could make connection \n");
return(sock);

>
printf("could NOT make connection \n");
sleep(l);
close(sock);
return(O);

102

Robot Visual Workshop (Motif) GUI-client: file: diente (cont.)

}

Function inet
Arguments: int sock (sock file descriptor)
Return: int
Purpose: Reads/Writes on socket
fr**/

inet(sock)
int sock;

{
int ret;

int bytes;
char strg[100];

printf("before ReadVn");
read(sock,&recmessage,sizeof(recmessage));
printf("AfterRead\n");

if(recmessage.ir = 1)
{
ifi[gbNeedToStart)

{
sendmessage.ir = 1;
sendmessage.ix = gix;
sendmessage.iy = giy;
strg[0] = 1;

}
else

{
sendmessage.ir = 0;
sendmessage.ix = 0;
sendmessage.iy = 0;
strg[0] = 65;

}
>

else
{
sendmessage.ir = 0;
sendmessage.ix = 0;
sendmessage.iy = 0;
strg[0] = 65;

>
if(sock > 0)
iflrct=write(sock, strg, 1)<0)
{

perror("error in write to sock");
close(sock);
return(O); /* socket write failed return 0 */

}
if(sock > 0)

103

Robot Visual Workshop (Motif) GUI-client: file: dient.c (cont.)

if(recmessage.ir = 1)
if(gbNeedToStart)

{
gbNeedToStart = 0;
if(ret=write(sock, &sendmessage, sizeof(sendmessage))<0)

{
perror("error in write to sock");
close(sock);
return(O); /* socket write failed return 0 */

}
}

printfC'After write\n");
fflush(fsock);
return(l); /* socket write worked return 1 */

}

Function: catchkill
Arguments: none
Return: void
Purpose:. Catches unix signals.
«ft***»***/

void catchkillO
{

printiCWE caught a signal\n");
}

104

Robot Visual Workshop (Motif) GUI-client: file: global.h

* File: globalh
*

* Contains the structure that is used for passing data
on the socket for the GUI-client. This structure is modified
for each application.

*
*

* C/C++ version
*
*Date: 8/97

struct data
{
int ix;
intiy;
intir;
};

105

Robot Visual Workshop (Motif) GUI-client: file: lander.c

/**

* File: lander.c
*

* lander.c does simple X-window drawing for the Visual Workshop (Motif)
* GUI-client.
*

* C/C++ version
*

♦Date: 8/97

#include <X1 l/Xatom.h>
#include <X11/Intrinsic.h>
#include<Xll/Shell.h>

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include <Xm/PushB.h>

#include "bp.h"

Window gwindow;
Display *gdisplay = NULL;

/**•••***••**

Function : drawline
Arguments: int x, int y, int x2, int y2
Return: void
Purpose:. Draws a line from x,y to x2,y2 in the graphics window.
a*****»*»***/

void drawline(int x,int y.int x2,int y2)

{
GC gc;
Display 'display;
Window xid;
int ii;

xid " gwindow;
display «= gdisplay;
gc = DcfaultGC(display,DefaultScreen(display));

XDrawLine(display ,xid,gc,x,y,x2,y2);

106

Robot Visual Workshop (Motif) GUI-client: file: lander.c (cont.)

/**

Function: drawcircle
Arguments: intx, y location of circle

int width
int height

Return: void
Purpose:. Draw a circle a x,y with width and height.
**/

void drawcircle(int x,int y,int width,int height)
{

GC gc;
Display *display;
Window xid;
int ii;

xid = gwindow;
display = gdisplay;
gc = DefaultGC(display,DefaultScreen(display));

XDrawArc(display,xid,gc,x,y,width,height,0,64*360);

}

/**

Function: setupimage
Arguments: Wigetw
Return: void
Purpose:. Gets display attributes from a widget.
•*••*•*********•**•*********•****•***••*••**********/

void _image(Widget w)
{
gdisplay = XtDisplay(w);
gwindow = XtWindow(w);

/••*•••••••*•*•*••**••••*••••***•**•••••••*******•*•*

Function: doimage
Arguments: int x,y
Return: int (<0 if error)
Purpose: Draw the robot at x,y
•••••••**»•***•***»**»»*****»»**«****«*****»***•****/

void do_image(int x,int y)
{
static int oldx = 0;
static int oldy = 0;

iflx = 0)
retum(O);

107

Robot Visual Workshop (Motif) GUI-client: file: lander.c (cont.)

if(gdisplay = NULL)
return(-l);

x = x/5 + 200;
y = y/5 + 200;
drawback();
clearrect(oldx-ll, oldy-11, 22, 22);
drawlander(x,y);
drawback();

oldx = x;
oldy = y;

}

/ft***

Function: clearrect
Arguments: int x,y,width,height
Return: void
Purpose: Clears the default display window at position x,y,width,

height.
•••«*••••***y

void clcarrect(int x, int y, int w, int h)

<
Window xid;
Display 'display;

xid = gwindow;
display = gdisplay;

XClcarArea(display,xid,x,y,w,h,0);
}

Function : clear
Arguments: none
Return: void
Purpose:.
•••••••••••••••••a**********»********»******»*******/

void clearQ

{
Window xid;
Display 'display;

xid «= gwindow;
display = gdisplay;
XClearWindow(display,xid);

}

108

Robot Visual Workshop (Motif) GUI-client: file: lander.c (cont.)

Function drawlander
Arguments: intx,y
Return: void
Purpose:. Draw the actual lander.

void drawlander(int x, int y)

{
drawcircle(x-5,y-5,10,10);
drawline(x,y-8,x,y+8);
drawline(x-8,y,x+8,y);

}

Function: drawback
Arguments: none
Return: void
Purpose: Draw the screen background.

void drawback()
{

drawcircle(0,0,400,400);
drawcircle(196,196,8,8)
drawcircle(198,198,4,4)

109

Robot Visual Workshop (Motif) GUI-client: file: thl.c

y**

♦File: thl.c
*

* thl.c is used to create a thread of execution to read
* on the socket, and register repaint events, for the GUI-client.
*

* C/C++ version
*

*Date: 8/97
** */

#include <stdio.h>
#include <math.h>
#include <thread.h>
#include <synch.h>
#include <ermo.h>

thread_t twriter;

int x = 0;
int y = 0;

I**

Function: add
Arguments: none
Return: none
Purpose: Add is called by the second. Add never returns. Add is

in an infinite loop that calls the socket function (clientmain)
to get data from the PSDL-server.
The image is then drawn.

•••••••••••••••**•***********•*••**•****•***********/

voidaddQ
{

whiled)
{

client_main(&x,&y);
do_imagc(x,y);

}

void sub()
{

fprintfl[stderr,"Sub\n");

110

Robot Visual Workshop (Motif) GUI-client: file: thl.c (cont.)

Function: oldmain
Arguments: none
Return: void
Purpose: Starts the second thread. Add will be called by the

second thread.
♦♦♦a**/

void oldmain()

{
int i;

thr_setconcurrency(2);
tru-_create(NULL,NULLXWTR)add,NULL,THR_NEW_LWP,«ferwriter);

}

111

112

LIST OF REFERENCES

Bruce D. Plutchak, plutchak@nosc.mil

THE DESIGN OF AN INTERFACE EDITOR FOR THE
COMPUTER-AIDED PROTOTYPING SYSTEM

1. Luqi, Shing, M., "CAPS: A Tool for Real-Time System Development and
Acquisition", National Research Review, 1992

2. Luqi, Ketabchi, M., "A Computer-Aided Prototyping System", IEEE Software,
March 1988

3. Luqi, Berzins, V., "A Prototyping Language for Real-Time Software", IEEE
Transactions on Software Engineering, October 1988

4. Luqi, Berzins, V., "Rapidly Prototyping Real-Time Systems", IEEE Software, March
1988

5. Luqi, Steigerwadl, R, Hughes, G., Berzins, V., "CAPS as a Requirements
Engineering Tool", Proceedings ofTri-Ada Conference, October 1991

6. Luqi, "Software Evolution Through Rapid Prototyping", IEEE Computer, May 1995

7. Luqi, Goguen, J., "Formal Methods: Promises and Problems", IEEE Software, January
1997

8. Pace, "CAPS Release 1 Tutorial", Thesis, Naval Postgraduate School, Monterey,
California

9. Dixon, R., "The Design and Implementation of a User Interface for the Computer-
Aided Prototyping System", Thesis, Naval Postgraduate School, Monterey, California,
September 1992

10. TAE: Getting Started with TAE Plus, TAE Plus Reference Manual V 5.2, NASA,
December 1992

11. Myers., B., "UIMSs, Toolkits, Interface Builders", ACM Transactions on Computer-
Human Interaction, March 1995

12. Valaer, L., Babb II, R., "Choosing a User Interface Development Tool", IEEE
Software, July 1997

113

13. Smart, J., "wxWindows", wxWindows Home Page,
http://web.ukonline.co.uk/julian.smart/wxwindows.com

14. Armstrong Jr., J., "GUI Tools Mature", Advanced Systems, March 1995

15. OpenUI Overview, Open Software Associates, January 1996

16. Aonix Home Page, http://www.aonix.com

17. Visual Numerics Home Page, http//www.vni.com

18. Math Works Inc. Home Page, http:/www.mathworks.com

19. DataViews Corp. Home Page, http://www.dvcorp.com

20. "Galaxy Application Environment", Visix Software Inc., 1995

21. Sun Microsystems Home Page, http://www.sun.com

22. McKay, R., "Platform Independent FAQ", zeta.org.au Home Page,
http://www.zeta.org.au/~rosko/pigui.htm, 1997

23. XVT Software Home Page, http://www.xvt.com

24. "Three Tier Software", Tier3 Home Page, http://www.tier3.com/Make3/threet.htm

25. Myers, B., "User Interface Software Tools", CMU Home Page,
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/bam/www/toolnames.html

26. Elliott, R., Powers, N., "One-Tier, Two-Tier, Three-Tier, A Server: Using Technology
to Solve Business Problems", Pacific-Electric Home Page,
http://www.pacific-electric.com/PacificElec/Product/whtpap04.htm

27. Churchill, S., "Programming Fresco, A Hands-On Tutorial to the Fresco User Interface
System", Faslab Home Page, http://www.faslab.com

28. Open Group Home Page, http:/www.opengroup.org/tech.desktop/x

29. JavaSoft Home Page, http://www.javasoft.com

30. Heller, P., Roberts, S., Java 1.1 Developer's Handbook, Sybex, 1997

31. Imperial Software Technology Home Page, http://www.ist.co.uk

114

32. Orfali, R., Harkey, D., Client/Server Programming with Java and CORBA, Wiley &
Sons, 1997

33. Vogel, A., "Socket Programming with Java", Java Developer's Journal, Vol. 2 Issue:
4 1997

34. Symantec Visual Cafe - Getting Started, Symantec Corporation, 1996

35. Ruiz, N., "Smartship Project Modeling", Thesis, Naval Postgraduate School,
Monterey, California

36. Cohn, M., et al., Java Developer's Reference, Sams Publishing, 1996

37. Sutherland, J., "The Java Revolution", SunExpert, January 1997

38. Visual Edge Home Page, http://www.vedge.com

39. Integrated Computer Solutions Home Page, http://www.ics.com

40. Open Software Associates Home Page, http://www.osa.com

41. Visual Workshop User's Guide Version 2, SunSoft, 1996

42. Xda: Ada 95 for X-Designer, OC-Systems Home Page, http://ocsystems.com

43. Parker, T., "Visual Workshop 3.0 for C++", UNÜC Review, July 1997

115

116

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
8725 John J. Kingman Rd., Suite 0944
Fort Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

Center for Naval Analysis.
4401 Ford Ave.
Alexandria, VA 22302

Dr. Ted Lewis, Chairman, Code CS/Lt.
Computer Science Dept.
Naval Postgraduate School
833 Dyer Rd.
Monterey, CA 93943

5. Chief of Naval Research.
800 North Quincy St.
Arlington, V A 22217

Dr. Luqi, Code CS/Lq
Computer Science Dept.
Naval Postgraduate School
833 Dyer Rd.
Monterey, CA 93943

7. Dr. V. Berzins, Code CS/Be.
Computer Science Dept.
Naval Postgraduate School
833 Dyer Rd.
Monterey, CA 93943

Dr. Marvin Langston
1225 Jefferson Davis Highway
Crystal Gateway 2 / Suite 1500
Arlington, VA 22202-4311

117

David Hislop.
Army Research Office
PO Box 12211
Research Triangle Park, NC 27709-2211

10. Capt. Talbot Manvel
Naval Sea System Command
2531 Jefferson Davis Hwy.
Arm: TMS 378 Capt. Manvel
Arlington, VA 22240-5150

11. CDR Michael McMahon
Naval Sea System Command
2531 Jefferson Davis Hwy.
Arlington, VA 22242-5160

12. Dr. Elizabeth Wald
Office of Naval Research
800 N. Quincy St.
ONR CODE 311
Arlington, VA 22217-5660

13. Dr. Ralph Wächter
Office of Naval Research
800 N. Quincy St.
CODE 311
Arlington, VA 22217-5660

14. Army Research Lab
115 O'Keefe Building
Attn: Mark Kendall
Atlanta, GA 30332-0862

15. National Science Foundation
Attn: Bruce Barnes
Div. Computer & Computation Research
1800 G St. NW
Washington, DC 20550

118

16. National Science Foundation.
Attn: Bill Agresty
4201 Wilson Blvd.
Arlington, VA 22230

17. Hon. John W. Douglass
Assistant Secretary of the Navy
(Research, Development and Acquisition)
Room E741
1000 Navy Pentagon
Washington, DC 20350-1000

18. Technical Library Branch
Naval Command, Control, and Ocean Surveillance Center
RDT&E Division, Code D0274
San Diego, CA 92152-5001

19. Naval Command, Control and Ocean Surveillance Center..
Attn: Steve Nunn
RDT&E Division, Code D44213
53245 Patterson Rd.
San Diego, CA 92152-7150

20. Naval Command, Control and Ocean Surveillance Center..
Attn: Bruce Plutchak
RDT&E Division, Code D44213
53245 Patterson Rd.
San Diego, CA 92152-7150

119

